The study of optimal (or semi-optimal) soft-decision decoding with low complexity is presented. Three achievements about it are obtained. First, the asymptotic performance of the iterative soft-in/soft-out decoding algorithm and the influence of the interleaver on the convergent performance are presented. Second, the mathematical element of Turbo codes is exposed. Third, much effort is given to the improvement of the "error-floor" performance, and theoretical foundation is provided on the constructure of high performance concatenated code. Another main focus is the study of the encoding and decoding of LDPC codes. Appropriate encoding and decoding methods which are fixable to the mobile communication system are obtained. Great effort is spent on the reduction of the complexity of encoding and decoding of LDPC codes so as to accommodate with the demand of real-time communication system. These results can help to improve the theoretical scheme of LDPC codes and could be a guidance for the LDPC codes in using as well. The resolving of these problem can be a great significance for the improvement of the coding theory and the application of Turbo codes and LDPC codes.
本项目拟研究并解决迭代软输入/软输出算法的收敛性问题,研究Turbo码与Shannon随机码的关系和交织器对迭代译码算法收敛性的影响。这些问题是编码理论中的一个重要且较为困难的课题。问题的解决直接关系到Turbo码原理在相关领域的应用。通过对此问题的研究,还有望得到更好的算法和适用于工程的迭代终止的判决条件。
{{i.achievement_title}}
数据更新时间:2023-05-31
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
物联网中区块链技术的应用与挑战
一种改进的多目标正余弦优化算法
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
一种加权距离连续K中心选址问题求解方法
大规模MIMO系统中迭代检测译码算法的研究
电磁兼容研究中几个关键问题
实用迭代可译码的错误平层研究
基于预编码的新型迭代可译码研究