The perception data of mining disasters is real-time and objective recording during various mining disasters. Analyzing the evolution process of the perception data scientifically and identifying valuable fragments of disaster recordings from massive perception data by clustering method is very significant for disaster prevention. The current clustering models can't present the dynamic characteristics of the evolution process of perception data and lack the methods for measuring the similarity of evolution process; thus inapplicable for the process clustering. According to the characteristics of the perception data of mining disasters and the actual requirements for data processing, the proposed research will use the domain knowledge for cognizing mining disasters to guide the clustering analysis of evolution processes of disaster perception data, performing data reduction, mode conversion and feature extraction which on the original perception data. It then identifies key events and characteristic features of the evolution process of the disaster perception data, builds the multi-level and multi-scale feature chains of perception data evolution process in time-series, divides the perception data of disasters into segments, measures the similarity among the segments, studies the applicable clustering models for the evolution process of disasters perception data comprehensively, and develops the theory and technical system for clustering analysis of the evolution process of the disaster perception data. Moreover, through the clustering results, this research will analyze the spatiotemporal evolution rules of the mining disasters, optimize the feature chains, recognize the segments of disaster process from the perception data intelligently and retrieve them automatically or semi-automatically. Finally, a real-time monitoring and pre-warning system, serving for the mining safety directly, will be investigated and developed.
矿山灾害感知数据是各类灾害过程实时的、客观的记录,科学分析感知数据的演变过程,通过聚类分析,从海量灾害感知数据中识别出有价值的灾害记录片断,对灾害防治具有重要意义。现有聚类模型无法表达数据演变过程的动态特征,也缺乏对演变过程相似性度量的方法,难以实现过程聚类。针对矿山灾害感知数据的特点和处理的实际要求,利用矿山灾害认知的领域知识来指导灾害感知数据演变过程的聚类分析,对原始感知数据进行数据约简、模式转换与特征提取,确定感知数据演变过程的关键事件和标识性特征,按照时间序列构建数据演变过程多层次、多尺度的特征链,分割灾害感知数据序列,研究序列的相似性度量方法,综合研究适用的聚类模型,形成灾害感知数据演变过程聚类分析的理论与技术体系。通过聚类后的灾害簇,分析矿山灾害的时、空演变规律,优化特征链,实现灾害过程的智能识别与自动、半自动检索。开发矿山灾害实时监测与预警系统,直接服务于矿山安全生产。
课题针对矿山物联网灾害感知数据处理的实际需求,充分利用灾害过程认知的领域知识,对监测数据进行聚类分析,提取了灾害的演变特征,探究了矿山灾害的时、空演变规律,构建了各灾害的评价与预测模型,分析了灾害演变过程的影响因素与调控机理,为灾害防治提供了决策支持,服务于矿山安全生产。课题主要研究内容与成果如下:.1、针对常见的矿山灾害:突水、煤与瓦斯突出、底板破坏、地表塌陷,分析了各灾害的主要影响因素,研究了主控因素的优选模型,并构建了灾害评价与预测的模型。.2、以矿井涌水、瓦斯排放为例,论证了矿山灾害具有非稳态、非线性、多样性的特点,表现出明显的混沌特征。在此基础上,应用混沌时间序列分析理论与方法研究了矿井涌水、瓦斯排放的预测模型,取得了若干新见解。.3、针对矿山灾害感知数据的特点,充分利用领域知识,在半监督、顾及不确定性的聚类算法方面进行了深入研究,找到了适合矿山灾害感知数据处理的聚类算法,如未确知聚类、灰色聚类、模糊聚类等,并在突水水源识别、瓦斯排放预测等方面进行了验证。.4、在理论研究基础上,开发了相应的功能模块,应用于试验矿区,实用效果良好。.课题初步构建了矿山主要灾害感知数据分析与处理的理论与技术体系,开发了灾害检测与预警的应用系统,对矿山信息化建设具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于SSVEP 直接脑控机器人方向和速度研究
面向过程的海洋异常变化时空聚类模型
基于情境感知的工程领域知识主动供应方法
领域知识驱动的空间聚类及其人工免疫优化算法研究
面向概念设计的多领域知识元建模与聚类理论与方法