Solar cells based on organic/inorganic hybrid perovskites as light absorbers are emerging as a low-cost and high performance photovoltaic technology. Over the past few years, significant progress has been made in perovskite solar cells. Recent studies revealed that perovskite materials exhibit several desired properties for photovoltaic applications including high charge mobilities, long carrier-diffusion lengths, high absorption coefficient and solution process, making them a very promising class of material for new generation photovoltaic technology. However, the prototype perovskite materials composed of volatile organic cations are subject to compositional degradation due to both heat and humidity. All-inorganic halide perovskite absorbers are much desired due to their excellent stability under thermal stress. Although some progress has been achieved in efficiencies, all-inorganic halide perovskite solar cells are still far away from commercialization as they are still facing several scientific and technical challenges including high phase transition temperature, poor film morphology, severe energy loss and unsatisfactory efficiencies. In this proposal, the applicant will tackle the current challenges of all-inorganic halide perovskite solar cells by an integrated strategy including: (1) design new all-inorganic halide perovskite composites along with the development of new processing technique to control the crystal growth and morphology of perovskite thin films. (2) develop new interfacial materials tailored to improve the interfacial property in perovskite solar cells. (3) balance the performance of electronic devices with their materials- and processing related microstructure induced degradation mechanisms. Through these complementary studies, we target to provide new solutions to improve both the reliability and performance of this new generation solar cells, paving the way for potential commercialization of this new photovoltaic technology.
传统有机/无机杂化钙钛矿太阳电池近年来在国际上引起了广泛关注, 钙钛矿材料具有迁移率高、载流子寿命长、光吸收能力强、可溶液加工等突出优点,并于近几年在效率方面取得了重大突破,被视为极具潜力的太阳电池技术。但其晶体存在有机阳离子,促使其不稳定、易吸水、易分解,全无机卤素钙钛矿在热稳定性方面具有先天优势,但相转变温度过高,形貌不佳,能量损耗大,效率较低。因此,本项目结合申请人在高效有机及有机/无机杂化太阳电池研究方向的经验,从多角度出发,交叉研究解决目前全无机钙钛矿光伏领域的关键科学问题,主要包括:(1)组分调控并开发新的加工方法以控制全无机钙钛矿晶体的生长及薄膜形貌;(2)发展适合于全无机钙钛矿太阳电池的新型界面材料及界面调控;(3)掌握全无机钙钛矿材料及加工工艺相关的老化机制并提升器件效率和寿命。基于以上研究基础,我们将进一步发展高效稳定全无机卤素钙钛矿太阳电池,推动钙钛矿技术商业化。
传统有机/无机杂化钙钛矿太阳电池近年来在国际上引起了广泛关注, 钙钛矿材料具有迁移率高、载流子寿命长、光吸收能力强、可溶液加工等突出优点,并于近几年在效率方面取得了重大突破,被视为极具潜力的太阳电池技术。但其晶体存在有机阳离子,促使其不稳定、易吸水、易分解,全无机卤素钙钛矿在热稳定性方面具有先天优势,但相转变温度过高,形貌不佳,能量损耗大,效率较低。因此,本项目结合申请人在高效有机及有机/无机杂化太阳电池研究方向的经验,从多角度出发,交叉研究解决目前全无机钙钛矿光伏领域的关键科学问题,主要包括:(1)组分调控并开发新的加工方法以控制全无机钙钛矿晶体的生长及薄膜形貌;(2)发展适合于全无机钙钛矿太阳电池的新型界面材料及界面调控;(3)掌握全无机钙钛矿材料及加工工艺相关的老化机制并提升器件效率和寿命。基于以上研究基础,我们将进一步发展高效稳定全无机卤素钙钛矿太阳电池,推动钙钛矿技术商业化。
{{i.achievement_title}}
数据更新时间:2023-05-31
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
强震过程滑带超间隙水压力效应研究:大光包滑坡启动机制
汽车侧倾运动安全主动悬架LQG控制器设计方法
岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制
含饱和非线性的主动悬架系统自适应控制
高效稳定无机钙钛矿光伏电池的研究
基于无机钙钛矿吸光体的太阳电池材料及器件研究
全钛基背投式PIN异质结钙钛矿型太阳电池研究
基于全无机钙钛矿量子点/有机无机杂化钙钛矿双吸收层异质结的新型太阳电池设计和研究