The nanoporous membrane as a novel and efficient technology is produced by multi-disciplinary cross of the energy, materials and process engineering. It is widely used in various fields, such as low grade heat and mass recycling, water desalination, energy and water conservation. This project focuses on the phase change heat and mass transfer process in complex nanoporous structures, which is a key of affecting the separation and transport property of the nanoporous membrane. With the molecular simulation and experimental test, the accurate molecular dynamics model of adsorption, agglomeration and transport in nanopore structures is established. We reveal the transport law of multicomponent gas molecular in nanoscale, and clarify the coupling interaction between the structure effect and interface effect in complex nanopores. In addition, the experimental investigation on condensation and transport of vapor mixtures through various nanoporous membranes is carried out. The mechanism and regularity of both the microstructure and interface effect on the characteristics of the condensation and transport in nanoscle complex porous structures. The research results can provide theoretical basis for designing and optimizing functional nanoporous membrane materials, and open a new approach for the development of condensation heat and mass transfer enhancement techniques. The achievements in this project are of great significance for the key technology development of efficient energy recovery and utilization, which involves the process of condensation heat and mass transfer of vapor mixtures in complex nanopores.
纳米多孔膜技术作为能源、材料、过程工程等多学科结合交叉产生的新型高效技术,在低品位热质回收利用、海水淡化、节能节水等领域均有广泛应用。本项目针对影响纳米多孔膜材料高效分离及物质输运性能的关键环节,即复杂纳米孔通道内混合蒸气冷凝相变热质传递过程,采用分子动力学模拟与实验研究相结合的方法,建立复杂纳米孔通道内混合蒸气分子吸附、团聚与输运过程的分子动力学模型,揭示纳米尺度下多组分气体的传递规律,明晰复杂纳米孔通道的尺度效应与界面效应的协同作用机制;开展纳米多孔膜材料内混合蒸气冷凝及输运特性实验研究,揭示微观结构与界面效应对复杂纳米孔通道内冷凝及输运特性的影响规律及作用机理。研究结果为设计与优化功能型纳米多孔膜材料提供理论依据,并为发展冷凝相变传热传质强化技术提供新思路,对涉及复杂纳米孔通道内混合蒸气冷凝相变热质传递过程的能源高效利用关键技术的研发具有重要意义。
纳米多孔膜技术作为能源、材料、过程工程等多学科结合交叉产生的新型高效技术,在低品位热质回收利用、海水淡化、节能节水等领域均有广泛应用。本项目针对影响纳米多孔膜材料高效分离及物质输运性能的关键环节,即复杂纳米孔通道内混合蒸气冷凝相变热质传递过程,采用分子动力学模拟方法,建立复杂纳米孔通道内混合蒸气分子吸附、团聚与输运过程的分子动力学模型,揭示纳米尺度下多组分气体的传递规律,明晰复杂纳米孔通道的尺度效应与界面效应的协同作用机制;开展纳米多孔膜材料内混合蒸气冷凝及输运特性实验研究,揭示微观结构与界面效应对复杂纳米孔通道内冷凝及输运特性的影响规律及作用机理。研究结果为设计与优化功能型纳米多孔膜材料提供理论依据,并为发展冷凝相变传热传质强化技术提供新思路,对涉及复杂纳米孔通道内混合蒸气冷凝相变热质传递过程的能源高效利用关键技术的研发具有意义。已发表学术论文3篇,其中SCI/EI收录2篇、CSCD收录1篇,国际会议论文1篇,授权实用新型专利1项,登记软件著作权1项。另外,协助培养硕士研究生3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
特斯拉涡轮机运行性能研究综述
基于SSVEP 直接脑控机器人方向和速度研究
蒸汽-不凝性气体混合浸没射流直接接触冷凝相界面特性及强化传热研究
微尺度通道内非共沸混合物流动沸腾热质传递耦合特性研究
塑性变形致金属纳米晶表面蒸汽滴状冷凝的形成机理研究
聚酯超临界挤出发泡系统中复杂通道内的热质传递过程数值模拟与调控