Light in the water is significant to many oceanic processes and the ecosystem. Water optical property is highly affected by the characteristics of particles, in which particle size is one important factor with arranging in 12 orders. Particle size contributes strongly to water optical properties, such as absorption and scattering, and light transfer processes in the water. It also has great influence on particle-mass retrieval from optical remote sensing. Therefore, research of the influence of particle size on water optical properties and remote sensing algorithms benefits not only for understanding local water optical properties, but also for developing algorithms of optical remote sensing which are suit for the China seas. However, this kind of topic is rare in the previous research for the China seas. This project focuses on understanding the mechanisms of particle size affecting water optical properties in the research areas. It will be performed by using theoretical analysis, numerical simulation, in-situ observations and experiments in lab. The research contents include the contributions of particle size on spectrum, the effect of particle size on the water spectral-specific absorption and scattering properties, the combined effect of particle size with composition and density and other characteristics of particles on water optical properties, and evaluating or advancing of mass-specific retrieval algorithms of optical remote sensing. This project will try to answer the following scientific questions. How particle size affects the process of backward scattering in the water? How particle size takes influence on mass-specific retrieval algorithms of optical remote sensing? This project aims to quantify the influence of particle size on water optical properties and retrieval algorithms of optical remote sensing. The research results will contribute to get the knowledge and approach the full understand of water optical properties in the research areas. The results will also be the base of developing high-precise mass-specific retrieval algorithms in the China seas.
海水光学性质与许多海洋过程及海洋生态系统密切相关,受颗粒物性质影响很大,粒径就是其中一项重要因素,影响着水体吸收散射等光学特性及水体中光的辐射传输,其分布跨度达到12个级别,对水色要素浓度的遥感反演影响很大。开展粒径对水体光学性质及遥感算法的影响研究,不仅有利于了解区域水体光学特征,而且对于发展适合我国的水色遥感算法,具有重要的科学意义,但在以往中国近海的研究中较少涉及。本项目拟通过理论数值模拟、现场观测和室内实验,研究颗粒物粒径对光谱作用区域及贡献,不同波长水体光吸收、散射特性受粒径影响情况,粒径与成分、密度等特性对水体光学性质的联合影响,并评估悬浮物遥感反演算法受粒径的影响程度,进行可能的算法改进。通过本项目研究将试图了解中国典型河口海域颗粒物粒径对水体光学性质的影响机制,解决颗粒物粒径对水体后向散射影响及对遥感算法影响的关键科学问题,为提高悬浮物浓度反演精度、发展适合算法打下基础。
悬浮颗粒物是海洋水体中重要的物质之一,其对海洋水体光学性质、诸多海洋过程、海洋生态系统以及海洋光学遥感有着重要的意义。为此,该项目针对我国黄渤海,基于多个航次的调查数据,以悬浮颗粒物粒径为切入点,开展了悬浮颗粒物的粒径分布特征及其模拟模型、固有光学量特性及其受控因素,以及悬浮颗粒物粒径和有效截面的遥感估测模型的相关研究内容。主要的研究发现和结果有:1)黄渤海悬浮颗粒物的粒径分布呈现出明显的空间变化特征,小颗粒物通常主导近岸水体,而大颗粒物主导远岸水体;在垂直空间上,悬浮颗粒物粒径分布呈现出明显的季节差异,夏季由于水体明显的层化现象,上层颗粒物比下层大,而冬季在风浪作用下水体混合充分,使得粒径垂向分布更加均匀。同时研究发现在黄渤海,模拟悬浮颗粒物粒径分布的常用幂律模型在不同的参考粒径下呈现出不同的模拟精度,为此提出了一种新的一种混合式粒径分布模型,相比单一模型,该模型具有更高的模拟精度;2)悬浮颗粒物的衰减和后向散射特性的一级变异主要由悬浮颗粒物的有效截面积浓度控制;而二级变异本质上则受悬浮颗粒物粒径、密度、物质组成、折射率的综合影响,相比之下,悬浮颗粒物的粒径能够解释二级变异最大比例的变化,而密度和折射率的影响次之,物质组成的影响最小;同时发现利用悬浮颗粒物粒径、密度、折射率和物质组成可以对其衰减和后向散射特性的二级变异进行有效的模拟,并建立了高精度的模拟模型;3)为了利用遥感技术,丰富对悬浮颗粒物属性的认识和研究,基于悬浮颗粒物粒径与遥感反射率的相关关系,建立了悬浮颗粒物中值粒径的经验遥感估算模型;同时,也建立了基于悬浮颗粒物比后向散射系数的悬浮颗粒物中值粒径遥感估算半分析模型;此外,基于悬浮颗粒物有效截面积与光学参量的强相关性,建立了悬浮颗粒物有效截面积的经验遥感反演模型,这些模型能够成功地用于现有卫星遥感数据,具有较好的反演精度。以上研究发现对黄渤海海水光学特性的全面理解、水体光辐射传输机制的揭示、耦合光学参量的海洋过程和生态系统的相关研究以及水色遥感技术的进一步发展,提供了重要的科学依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
感应不均匀介质的琼斯矩阵
物联网中区块链技术的应用与挑战
一种改进的多目标正余弦优化算法
高悬浮物浓度对海表温度红外遥感的影响研究
湖泊垂直非均匀水体悬浮物对遥感反射率的影响机制—以鄱阳湖光学深水区为例
高寒山区雪粒径光学遥感反演的关键技术研究
南海水下珊瑚礁白化光学遥感方法研究