The need for renewable and clean sources of energy has led to a recent and growing interest towards the development of FOWT technologies which may be deployed in water depths of beyond 50 m for the cost-effective generation of electricity. A floater allowing large-angle motion supporting a large payload (wind turbine and nacelle) with large aerodynamic loads high above the water surface is a great challenge because of the raised center of gravity and large overturning moment and the gyroscopic effect of rotating blades. The research will offer a efficient methodology without singularity to compute large-angle rigid body rotations of a FOWT. Quaternion-based attitude kinematic model is introduced to describe the dynamic response of the FOWT system considering the impact of blades gyroscopic effect, after that, a basin model verification testing will be carried out. The major goal of this research is to develop a fully coupled simulation tool which could be convenient used for FOWT allowing large-angle motion and to clarify the potential mechanism between blades gyroscopic effects and support systems of FOWT under environmental loads.
海上风能作为一种清洁的可再生能源,越来越受到世界各国的重视,在水深超过50m时浮式海上风电机组(FOWT)将体现出明显的经济优势。允许大范围转动的FOWT支撑系统不仅承受强风的水平推力,而且承受垂向巨大的风机设备自重荷载。风机运行时除了产生显著的倾覆弯矩外,叶片旋转还会形成陀螺效应。由于其高柔性特点及对环境荷载的高敏感性,陀螺效应对浮式支撑系统的姿态稳定性影响不可忽略。针对FOWT大幅运动特征,本研究将建立基于四元数理论描述的无奇异且适用的系统运动姿态耦合模型,然后开展水池模型试验进行验证。本研究主要目标是揭示环境荷载激励下陀螺效应对浮式支撑系统的运动姿态影响及耦合作用机制。
海上风能作为一种清洁的可再生能源,越来越受到世界各国的重视,在水深超过50m时浮式海上风电机组(FOWT)将体现出明显的经济优势。由于其高柔性特点及对环境荷载的高敏感性,陀螺效应对浮式支撑系统的姿态稳定性影响不可忽略。针对FOWT大幅运动特征,本研究建立了基于四元数理论描述的无奇异且适用的系统运动姿态耦合模型,然后开展水池模型试验进行了验证,揭示了环境荷载激励下陀螺效应对浮式支撑系统的运动姿态影响程度,本研究构建的数值模拟方法和模型试验方法针对性强,为FOWT的深入研究提供了有益的借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
海上风电浮式基础动力特性研究
基于超疏水效应的液浮转子微陀螺研究
海上风力机浮式支撑结构平台系统耦合动力响应机理研究
海上风能/潮流能互补发电浮式基础载荷与运动响应研究