几类半群及其等周轮廓

基本信息
批准号:11101336
项目类别:青年科学基金项目
资助金额:23.00
负责人:王正攀
学科分类:
依托单位:西南大学
批准年份:2011
结题年份:2014
起止时间:2012-01-01 - 2014-12-31
项目状态: 已结题
项目参与者:刘国新,宫春梅,夏云伟,燕翔,李际单
关键词:
完全正则半群逆半群等周轮廓有限生成半群
结项摘要

"应用几何思想于代数研究,是上世纪数学的主导之一"。代数(如PI代数、Weyl代数、量子矩阵代数、群、半群等)的等周轮廓,就是描述代数的几何特性的。本项目中,我们将在我们已有工作的基础上,运用代数、组合方法,开展以下几方面的研究:(1)讨论有限字母表上的语言的组合、代数性质,确定其中某些语言的等周轮廓(语言的等周轮廓实质上也可视为某相应的有限生成半群的等周轮廓);(2)从若干有重要应用背景的逆半群入手开始有限生成半群的性质、结构及其等周轮廓的研究。这将为形式语言、半群理论的进一步应用拓广思路、奠定基础,也将为群、各类代数的等周轮廓的相关研究提供新思路。

项目摘要

半群理论,在数学内部与外部均有较为广泛的应用背景,例如,逆半群在环论、C*-代数与λ-积分等领域有广泛应用;正则的可解仿射代数幺半群和含有限个幂等元的正则不可约仿射代数幺半群都是完全正则的,这类仿射代数幺半群有丰富的组合与拓扑结构,这奠定了涉及完全正则半群的交叉研究基础;组合半群(形式语言、码)在逻辑学、理论计算机科学、信息科学等领域有深入应用。我们在已有工作的基础上,运用代数、组合方法,开展了以下几方面的研究:(1)刻画了某些(广义)完全正则半群的结构、性质和同余和簇。(2)讨论了有限字母表上的语言(特别地,Arshon语言)的组合、代数性质,确定了这些语言的等周轮廓(语言的等周轮廓实质上也可视为某相应的有限生成半群的等周轮廓)。这些研究为半群理论和形式语言的进一步应用提供了几丝新的思路,也为我们的后续研究工作奠定了基础。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
2

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
3

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021

王正攀的其他基金

批准号:10926031
批准年份:2009
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

几类特殊(双)半群及其相关应用

批准号:10926031
批准年份:2009
负责人:王正攀
学科分类:A0104
资助金额:3.00
项目类别:数学天元基金项目
2

几类广义正则半群、作用和范畴及其在圈积和图中的应用

批准号:11261018
批准年份:2012
负责人:李春华
学科分类:A0104
资助金额:45.00
项目类别:地区科学基金项目
3

典型群及相关代数结构上几类图的自同构群及自同态半群

批准号:11571360
批准年份:2015
负责人:王登银
学科分类:A0104
资助金额:50.00
项目类别:面上项目
4

几类半群在图论和形式语言学中的应用

批准号:11301470
批准年份:2013
负责人:王守峰
学科分类:A0104
资助金额:22.00
项目类别:青年科学基金项目