Recently, much progress has been made in the study of transition metal sulfide (TMDC) valleytronics, but the carrier mobility is low and the valleys are not self-polarized, meaning it cannot be directly applied to the field of information storage. The feasibility of realizing the polarization of the valley and its detection is the core that the valley degree of freedom which applies to the processing of quantum information. The purpose of this project is to use the first-principles calculation to explore the material of spontaneous valley polarization. Using molecular beam epitaxy and mechanical stripping method to prepare high quality valley samples and van der Waals heterojunction. Through the light, electricity, magnetic field and other external conditions to break the valley degenerate, and make the valley polarization. Using ultrafast time-resolved fluorescence spectroscopy to detect the fluorescence lifetime of the intervalley and defective excitons , providing its application in single photon source .Through the micro-nano fabricated processing technology to prepare the valley quantum Hall device, to achieve the valley spin Hall effect, and provide its application in the field of information storage possibilities. .Through the study of this project, it is helpful to deeply understand the relaxation mechanism of the valley and the micro mechanism of the electron dynamics of the valley; to improve the life of the exciton luminescence of the grain material; to obtain the first-hand experimental data; to form the theory of the valley from the basic principle Prototyping devices work in all directions; to promote the development and innovation of Valley electronics. This project is of great significance to promote the exploration of grain material and the application of a new type of electronic devices.
基于过渡族金属硫化物谷电子学的研究近年来取得了很大进展,但材料载流子迁移率低,谷并非自极化,不能直接应用于信息存储领域。实现能谷的极化及其探测的可行性是谷自由度应用于量子信息处理的核心。本项目旨在采用第一性原理计算探索自发谷极化的材料。采用分子束外延和机械剥离法,制备高质量的谷样品和范德华异质结。通过光、电、磁场等外在条件打破谷之间的简并,并使之谷极化。利用超快时间分辨荧光谱测量谷间和缺陷结合激子的荧光寿命,探索其在单光子源中的应用。通过微纳加工工艺制备出谷量子霍尔器件,实现谷自旋霍尔效应,并提供其在信息存储领域应用的可能性。通过本项目的研究,有助于深刻理解谷的弛豫机制和谷电子动力学的微观机理,提高谷材料激子发光的寿命,得到第一手实验数据,形成对谷电子学从基本原理到原型器件全方位的工作,推动谷电子学的发展和创新。本项目对促进谷材料的探索和新型谷电子学器件的应用具有重要意义。
基于过渡族金属硫化物谷电子学的研究近年来取得了很大的进展,但其材料的载流子迁移率低,谷并非自极化,不能直接应用于信息存储领域。实现能谷的极化及其探测的可行性是谷自由度应用于量子信息处理的核心。.本项目旨在采用分子束外延和机械剥离法,制备高质量的谷样品和范德华异质结。开展谷间激子和缺陷结合激子的研究,探索其在单光子源中的应用。通过第一性原理计算及自主研发的群论分析,探索自发谷极化的材料。通过微纳加工工艺制备出谷量子霍尔器件,通过光、电、磁场等外在条件打破谷之间的简并,并使之谷极化,实现谷自旋霍尔效应,并提供其在信息存储领域应用的可能性。通过本项目的研究,有助于深刻理解谷的弛豫机制和谷电子动力学的微观机理,提高谷材料激子发光的寿命,得到第一手实验数据,形成对谷电子学从基本原理到原型器件全方位的工作,推动谷电子学的发展和创新。本项目对促进谷材料的探索和新型谷电子学器件的应用具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
面向云工作流安全的任务调度方法
外场调控下石墨烯类材料中Dirac电子的自旋-谷耦合量子输运
量子系统的热谷电转换效率及热谷电输运特性研究
硅烯中自旋和能谷旋量的输运调控
光子晶体中能谷调控光传输的理论与实验研究