Hexagonal boron nitride (h-BN) nanomaterials have been widely investigated in the field of material protection and anti-friction due to their excellent high temperature oxidation resistance, chemical corrosion resistance and lubrication performance. However, the research on the friction and wear properties of h-BN nanomaterials is mainly focused on the material preparation and anti-friction and anti-wear property characterization, and currently their friction coefficients are relatively high. Rare research involved the friction and wear properties of h-BN nanomaterials under different temperature, humidity and acid-base evironment though they displayed high temperature anti-oxidation and acid and basic resistance properties. In addition, the corresponding friction and wear mechanism of h-BN nanomaterials is still not clear. Therefore, based on the above problems, this application intends to undertake the research on the surface structure and performance design and anti-friction and anti-wear mechanism of h-BN nanomaterial based films. The project will design and control the microstructure of h-BN nanomaterial based films by introducing electron-rich anions of F- and Cl- and electron-deficient cations of H+, investigate the friction and wear performance of h-BN nanomaterial based films under different temperature, humidity and acid-base evironment, establish the correlation between the surface microstructure and properties of h-BN nanomaterial based films and their anti-friction and anti-wear performance. Furthermore, the anti-friction and anti-wear mechanism of exfoliation-scroll-rolling of h-BN nanomaterial based films will be clarified in terms on the characterization of microstructure and analysis of wear track and wear debris combining with the molecular dynamics simulation.
六方氮化硼基纳米材料因其优异的高温抗氧化、耐腐蚀和润滑性能而在材料防护与抗摩擦磨损领域得到广泛研究。但是,目前针对六方氮化硼基纳米材料抗摩擦磨损性能研究主要局限于材料制备与摩擦磨损性能测试方面,且其摩擦系数相对较高;基于六方氮化硼基纳米材料高温抗氧化、耐腐蚀特性,关于其多环境(宽温域、湿度、强腐蚀)摩擦磨损性能研究较少,且其相应摩擦磨损机制尚不清楚。针对上述问题,本申请项目拟开展六方氮化硼基薄膜表面结构、性能调控及摩擦磨损机制研究。通过引入F-、Cl-等富电子或H+等缺电子基团对六方氮化硼基薄膜表层结构进行调控,探讨改性六方氮化硼基薄膜在不同温度、湿度、酸碱度中的摩擦磨损性能,建立六方氮化硼基薄膜的表面微观结构、特性与摩擦磨损性能的相关性规律,结合磨痕、磨屑分析结果与分子动力学模拟(LAMMPS软件)过程揭示六方氮化硼基薄膜表层剥落-卷曲-滚动的摩擦磨损机制。
目前针对六方氮化硼基纳米材料抗摩擦磨损性能研究主要局限于材料制备与摩擦磨损性能测试方面,且其摩擦系数相对较高;基于六方氮化硼基纳米材料高温抗氧化、耐腐蚀特性,关于其多环境(宽温域、湿度、强腐蚀)摩擦磨损性能研究较少,且其相应摩擦磨损机制尚不清楚。针对上述问题,本项目开展了六方氮化硼基薄膜表面结构、性能调控及摩擦磨损机制研究。首先,基于六方氮化硼基薄膜的沉积机理,改造了六方氮化硼基薄膜气象沉积系统,初步实现了六方氮化硼基薄膜的气象沉积;其次,基于对电子分布状态与相应摩擦性能之间构效关系,提出了通过调整六方氮化硼纳米片(h-BNNSs)体系的电子结构来改变层间相互作用,从而降低h-BNNSs层间摩擦的方法;基于ʻegg-boxʼ模型,通过引入氟(F),氢(H),氧(O)等原子促进电子在双层h-BNNS层间和层内的再分布,从而改变层间的相互作用能,进而调控层间的摩擦学行为。再次,通过剥离-原位改性工艺,制备了金属纳米颗粒、聚合物、氟元素、羟基等功能化h-BNNSs,并系统研究了功能化h-BNNSs作为水基纳米润滑添加剂/薄膜的摩擦学性能和摩擦机制。随后,制备了h-BNNSs包裹碳纳米颗粒结构。该结构可直接涂覆于非晶碳膜表面,优化碳基薄膜在潮湿环境下的摩擦学性能。最后,采用多巴胺改性h-BNNSs,以提高h-BNNSs的界面相容性和成膜性,并在聚乙烯醇的辅助下,制备了具有良好的防腐和减摩性能的h-BN@PDA基涂层。上述研究结果为后续h-BN基润滑材料/薄膜的设计制备提供了实验基础和理论依据。.项目执行期间,发表SCI论文17篇,申请专利10项,授权4项;培养博士毕生1人,联合培养博士生2人,其中2人获得中国科学院“朱李月华优秀博士生”奖;合作培养硕士毕业生5人;受国际、国内学术会议邀请做分会主席、口头报告等6次。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
钢筋混凝土带翼缘剪力墙破坏机理研究
合金表面含钛碳基纳米多层复合薄膜的结构调控与生物摩擦磨损性能
氧化铬薄膜微观摩擦磨损性能的表征及机制
高熵合金增强铜基摩擦材料的界面调控及摩擦磨损机理研究
石墨烯薄膜的表面粘着特性调控与磨损机制