In recent years, asteroids have gradually become the focus of deep-space exploration; and near-Earth asteroids are the key objectives for asteroid defense due to their potential collision flying over the Earth. Therefore, the low-cost launch of spacecraft for multi-point time-of-place asteroid exploration during their flying over the Earth can solve the above problems simultaneously. With the improvement of aerospace chip manufacturing technology, it is possible for the new spacecrafts to carry out the multi-point time-of-place asteroid exploration by means of intensive cluster flight. Compared with the traditional single point detection, the cluster-type means can achieve a large number of detection points similar to fluid-intensive distributions, which thus arouses the new problem to be solved in the subjects of orbital dynamics. In this context, the natural and controlled capture dynamics of spacecraft before and after the asteroid flying over the Earth is studied to generate transfer trajectories from the Earth to the asteroid. Based on this, the micro-behaviors including the boundedness of relative configuration of the clusters, and their station-keeping and reconfiguring control, as well as the micro-behaviors of density evolution and control in the hyperbolic gravitational field are also studied. After the completion of this project, the research will contribute to extend the scope of spacecraft dynamics and control, and provide the mechanics theory, calculation basis and key technical support for large-scale exploration of asteroids in the future.
近年来,小行星逐渐成为深空探测的热点,而近地小行星会以一定的碰撞风险飞掠地球,成为小行星防御的重点观测目标。因此,在其飞掠地球期间低成本地发射小行星多点分时原位探测器,可一举两得地解决上述问题。随着航天芯片制造技术的提高,新型航天器以密集的集群飞行方式完成对小行星的多点分时原位探测将成为可能。相对于传统的单点式探测,集群式探测胜在提供类似流体密集分布的众多探测点,这为航天轨道动力学学科提出新的研究问题。本项目在此背景下研究航天器在小行星飞掠前后的自然和受控捕获动力学用以生成地-星转移轨迹,并以此为基础研究完成小行星捕获的集群航天器间相对构型有界性、维持及重构控制等微观行为,以及双曲线型引力场下集群密度演化和密度操控等宏观行为等科学问题。项目完成后,将有助于扩展航天动力学与控制领域的研究范围,并为我国未来大规模开发小行星供动力学理论、计算依据和关键技术支撑。
项目以从地球近旁飞掠的小行星多点分时原位探测为背景,以为我国未来大规模开发小行星提供动力学理论、计算依据和关键技术支持为目标,进行了相应的航天器动力学和集群研究,主要涉及以下三个方面:1)小行星飞掠前后自然和受控捕获动力学;2)小行星附近编队飞行的相对轨道微观演化与控制;3)小行星附近编队飞行的集群密度宏观演化与操控。项目取得了一些创新性成果:1)揭示了非圆型限制性三体问题平动点的动力学结构,发现了三体系统新的静态分叉和动态分叉现象,提出了平动点附近运动的高阶近似解构造方法,提出了基于同/异宿连接的低能量转移和捕获构造方法。2)揭示了自然相对不变轨道的存在性,提出了基于保Hamiltonian结构的受控相对不变轨道构造方法,提出了多类型保Hamiltonian结构控制器的构造方法,实现了小行星附近编队飞行的控制与维持。3)提出了基于偏微分方程的集群密度宏观描述方法,构建了基于偏微分密度模型的集群操控方法,提出了航天器集群/编队低能耗重构策略实现和最优重构路径选择的方法。项目共发表SCI期刊论文29篇,申请专利7项,出版学术专著1部,获评省部级奖励2项,参研硕博研究生15人,实现成果转化2项,项目组完成了所有预定的研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
面向云工作流安全的任务调度方法
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
当归补血汤促进异体移植的肌卫星细胞存活
一种改进的多目标正余弦优化算法
编队飞行卫星群的轨道动力学与控制
日地系统平动点附近混合编队飞行动力学与控制
近地轨道复杂摄动环境下卫星长期编队飞行燃料最省控制策略研究
编队卫星群协同飞行的轨道机动动力学与控制研究