The press pack insulated gate bipolar transistor (IGBT) with high voltage and high-power density is especially suitable for the power electronic equipment which has high voltage and large capacity. It is of great significance to develop the independent intellectual press pack IGBT modules for our country. The large-scale IGBT and FRD (Fast Recovery Diode) chips are packaged in parallel through applied pressure on them to form the press pack IGBT module. The interactions among the electromagnetic field, stress field and temperature field exist in the turn-on/turn-off process and the on/off state. Due to the unclear interaction mechanism of the multi-physical fields, it is difficult to realize the balanced regulation and control on the multi-physical fields such as current and electromagnetic fields, which has restricted the performance improvements of the IGBT modules seriously.. This project focuses on the scientific issue that is the interaction mechanism of multi-physical fields in the package of press pack IGBTs with large-scale IGBT and FRD chips in parallel. The project belongs to the interdisciplinary research in which the theories of electromagnetic field, semiconductor physics, stress field and temperature field will be employed. Besides, the theoretical analysis and experimental measurement are combined in this project. The following four aspects will be involved: (1) the circuit model, characteristics, characterization parameters and screening method for the packaged and paralleled chips; (2) the influence of parasitic parameters on the dynamic characteristics of the large-scale paralleled chips; (3) the insulation characteristics and influencing factors of the insulation materials in press pack IGBT; (4) the regulation method for multi-physical fields in press pack IGBT. Through the investigations conducted in the project, the interaction mechanism of multi-physical field can be obtained and the corresponding regulation method can be mastered, which will establish scientific base for the domestically designed and manufactured press pack IGBT modules to meet the demands of the smart grid.
高压大功率压接型IGBT器件特别适合高压大容量电力电子装备应用工况。研制自主知识产权器件,具有重要意义。器件通过外施压力将IGBT/FRD芯片规模化压接并联封装,在器件开通/关断、导通、阻断过程中,电磁场、应力场、温度场相互作用,由于相互作用机制不明,难以对电流及电磁场等多物理场进行均衡调控,从而制约了器件性能的提升。本项目围绕IGBT/FRD芯片规模化压接并联封装多物理场相互作用机制的科学问题,以电磁场理论为根本,协同半导体物理、应力场和温度场理论,通过学科交叉,采用理论分析与实验测量相结合的研究方法,从4个方面开展研究(压接并联下芯片的电路模型/特性/表征与筛选方法、压接封装寄生参数对芯片规模化并联动态特性的影响、压接封装绝缘材料绝缘特性及其影响因素、压接封装多物理场与调控方法),认知多物理场相互作用机制,掌握调控方法,为我国自主制造满足智能电网需求的压接型IGBT器件,奠定科学基础。
压接型IGBT器件是通过外施压力将数十个IGBT芯片并联与封装实现的,是构建以新能源为主体的新型电力系统的核心器件。立项之初,我国尚不能自主研制。. 本项目聚焦压接型IGBT器件封装的多物理场相互作用机制的科学问题,采用理论分析与实验测量相结合的研究方法,对4项主要研究内容开展了重点研究,即:压接并联下芯片的电路模型、特性、表征与筛选方法;压接封装寄生参数对芯片规模化成组动态特性的影响;压接封装绝缘材料绝缘特性及其影响因素;压接封装多物理场与调控方法。. 本项目取得了15项主要研究进展,即:研制了压接型IGBT芯片特性实验平台、压接型器件封装绝缘特性实验平台;建立了压接型IGBT芯片的动态分析模型、压接型IGBT器件的多物理场耦合模型;提出了压接型IGBT器件内部芯片电流的测量方法、压接型IGBT器件内部芯片结温的时序测量方法、压接型IGBT芯片参数的筛选方法、电流连续的细导体段模型的磁场理论及电感计算公式、弛豫电场的计算方法、压接型IGBT器件内部芯片热阻矩阵参数的解析公式;揭示了压接型IGBT器件内部芯片PETT振荡的机制;认知了压接型芯片特性的影响因素及其规律、压接型IGBT器件内部芯片电流的影响因素及其规律、压接型器件封装绝缘材料放电特性的影响因素及其规律、压接型IGBT器件内部芯片多物理量的分布特性。. 本项目15项主要研究进展中,电流连续的细导体段模型的磁场理论及电感计算公式、弛豫电场的计算方法、压接型IGBT器件内部芯片电流的测量方法、压接型IGBT器件内部芯片结温的时序测量方法4项代表性成果,具有“0到1”原始性创新的特征。. 本项目发表和录用论文55篇(发表45篇,含SCI收录26篇,EI收录15篇。录用10篇,含SCI期刊5篇,EI期刊3篇);授权和受理发明专利20件(授权11件,受理9件);培养学术骨干5人、博士研究生13人和硕士研究生15人。. 本项目解决了我国自主研制压接型IGBT器件技术瓶颈背后的科学问题,为器件封装的芯片参数筛选、多芯片并联电流均衡、封装绝缘和多物理场均衡设计奠定了理论基础,提供了设计依据和调控方法。研究成果应用于我国3.3kV/1500A和3.3kV/3000A压接型IGBT器件的自主研制,突破了“卡脖子”问题,促使了基础研究成果走向应用,部分研究成果实现了原始创新。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
空气冷却电子封装器件多物理场耦合热设计优化研究
高压大电流IGBT模块内部多物理场分析与拓扑优化研究
有机电致发光器件的多物理场耦合特性研究
超临界CO2压裂页岩多物理场耦合机理研究