Along with the rapid development of society and the explosion of population, the excessive consumption of energy has led to huge environmental problems such as the greenhouse effect and the haze, which has seriously influenced our living environments. Clean energy gases such as methane and hydrogen not only have big reservoirs as well as lower carbon dioxide emissions but also can replace the petroleum as the fuel for the cars. At present, the bottleneck that prevents the methane and hydrogen from the practical application is how to efficiently store these energy gases. In this project, we plan to precisely control the conformations of the ligands by the introduction of different substituents with different electron effects as well as different steric hindrance effects. On this basis, using the topology-directing strategy we want to realize the controllable syntheses of flexible crystalline porous materials. Finally, we will explore the relationship between the flexibility of the frameworks and the capacity of the energy gases and summarize the law of energy gas storage performance. As a result, we want to increase the capacity of the energy gases, particularly the working capacity. The proposal is expected to screen out 2 - 4 kinds of flexible crystalline porous materials with high capacity of the energy gases, publish 8 – 10 papers in the famous journals. The successful execution of this project will not only provide a new method for efficient storage of the energy gases, but also will lay the solid material foundation for practical application of the clean energy gases.
随着社会的高速发展和人口的激增,能源的过度消耗导致了诸如温室效应以及雾霾等巨大的环境问题,这已严重影响人类的生存环境。清洁能源气体如氢气和甲烷不仅具有较大的储藏量以及低的二氧化碳排放,而且可以替代石油作为驱动汽车的燃料。目前,氢气和甲烷的存储问题是制约它们实际应用的瓶颈。本项目拟通过利用不同取代基的推拉电子效应以及立体位阻效应实现取代基精确控制有机配体构象;通过拓扑导向的合成策略,实现柔性晶态多孔材料的可控制备;探索框架柔性与能源气体存储性能之间的关系,总结影响能源气体存储性能的规律,提高能源气体的存储量特别是工作容量。本项目预计筛选出2-4种具有高的能源气体存储能力的柔性晶态多孔材料,发表高水平论文8 - 10篇。本课题的顺利实施不仅可为能源气体的高效存储提供一种新的途径,而且可为清洁能源的实际应用奠定坚实的材料基础。
本项目通过利用不同取代基的推拉电子效应以及立体位阻效应实现了取代基精确控制有机配体构象;通过拓扑导向的合成策略,实现了柔性晶态多孔材料的可控制备;探索框架柔性与能源气体存储性能之间的关系,研究了晶体结构特别是孔道电子结构变化对气体分离性能的影响,总结得出影响能源气体存储及吸附分离性能的规律。提高材料对能源气体的存储工作容量,同时实现提升多孔材料对多种轻烃混合物的有效分离性能。本项目筛选出了22种具有高的能源气体存储能力或气体吸附分离能力的柔性晶态多孔材料,发表高水平论文22篇,培养研究生11人。本课题的顺利实施不仅为能源气体的高效存储和分离提供一种新的途径,而且为清洁能源的实际应用奠定坚实的材料基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
柔性多孔配位聚合物的制备及其在甲烷存储领域的应用
分子基多孔晶态材料的设计合成及其气体存储和药物负载的性能研究
纳米碳基高分子复合材料的可控制备及其在新能源领域的应用基础研究
柔性多孔材料的制备及其甲烷储存应用研究