Based on the previous use of chitosan-supported metalloporphyrins as catalyst materials for bio-mimicking the frame and function of Citochrome P450 enzyme, there are three scientific issues: 1. the supported materials were so to be solid that oxygen molecules did not efficiently touch to the supported inner metalloporphyrins and could not be activated at most, 2. the metalloporphyrins anchored just by coordination are still easy to be leached from support and are destructed by oxidants, 3. the metalloporphyrin anchored by coordination is not fastened on chitosan and then the axial coordinate bond did not effectively regulate the catalytic acivity of metalloporphyrin. The project is about studing on preparation, structure and performance of a catalyst material, the porous chitosan supported metalloporphyrins by a binding form of electrovalent or covalent bond joined company with coordinate bond, which is with bio-mimetic frame and function for Citochrome P-450 enzyme, and which structures are studied using the modern spectroscopy techniques(UV-Vis、FTIR、 NMR、BET、SEM、TEM、TG、XRD、EPS and so on). A catalysis of the porous chitosan supported metalloporphyrins for aerobic oxidation of hydrocarbon(such as cyclohexane), under a simple and green reaction conditions in catalytic industry (O2, no any solvents, coreductants and additives, T<463 K, P O2<1.0 MPa), would be explored by GC-Mass and GC spectroscopy techniques with the qualitative and quantitative analysis of the main products, revealing a relationship of the performance and the structure for the model of frame and function for the Citochrome P-450 enzyme, the porous chitosan supported metalloporphyrins.
基于曾用壳聚糖固载金属卟啉作仿生结构催化材料中存在的三个科学问题:1. 催化材料为实心,固载的金属卟啉未能充分接触并最大活化氧气,2.物理加配位吸附还是会造成固载的金属卟啉不牢固而脱落并被氧化消耗, 3.仅靠配位固载不牢固,不足以充分发挥轴向配位调节其催化活性功能。本项目拟研究制造多孔壳聚糖离子键或共价键加配位键固载金属卟啉仿生结构催化材料。用现代光谱技术(UV-Vis、FTIR、 NMR、BET、SEM、TEM、TG、XRD、EPS等)研究此类催化材料结构。在简洁绿色工业催化条件下(O2为氧源,无还原剂、共催化剂和添加剂,T<463 K, P<1.0 MPa),以烃类(如环己烷等)为探针,用GC-Mass和GC内标技术对主产物进行定性定量,探索此类材料催化分子氧氧化烃类的性能。揭示此模拟细胞色素P450酶之结构功能的催化材料结构与性能关系。
基于曾用壳聚糖固载金属卟啉作仿生结构催化材料中存在的三个科学问题:1.催化材料为实心,固载的金属卟啉未能充分接触并最大活化氧气,2.物理加配位吸附还是会造成固载的金属卟啉不牢固而脱落并被氧化消耗,3.仅靠配位固载不牢固,不足以充分发挥轴向配位调节其催化活性功能。.本项目拟.①.研究制备实心壳聚糖接枝固载金属卟啉仿生结构催化材料,用可与壳聚糖的氨基进行盐键/共价键接枝和对金属卟啉中心离子配位的第二类(代)金属卟啉(如苯环上的取代羧基和磺酸基等),通过化学反应进行(盐键+配位键)或(共价键+配位键)接枝固载制备该实心型催化材料。.②.研究制备相应的多孔壳聚糖接枝固载金属卟啉仿生结构催化材料.③.研究制备多孔壳聚糖颗粒接枝固载金属卟啉仿生结构催化材料.④.用现代光谱技术(UV-Vis、FTIR、 NMR、BET、SEM、TEM、TG、XRD、EPS等)研究此类催化材料结构。.在简洁绿色工业催化条件下(O2为氧源,无还原剂、共催化剂和添加剂,T<463 K, P<1.0 MPa),以烃类(如环己烷等)为探针,用GC-Mass和GC内标技术对主产物进行定性定量,探索此类材料催化分子氧氧化烃类的性能。揭示此模拟细胞色素P450酶之结构功能的催化材料结构与性能关系。.研究发现:介孔壳聚糖微球共价键接枝四(五氟苯基)金属(铁、锰和钴)卟啉3种固载金属卟啉仿生催化材料[M(Fe,Mn,Co)TPFPP/mesp-CTS]比相应的非介孔催化材料[M(Fe,Mn,Co) TPFPP/macrp-CTS]催化乙苯的转化率和醇酮产率分别提高10.0~31.3%和15.1~20.0%;M TCPP/np-CTS 和M TPPSO3H/np-CTS 也有不同程度的此类提高现象。M TPPSO3H/np-CTS和M TCPP/np-CTS 分别用于催化甲苯和环己烷同样有此类想象发生。在优化的反应条件下,此类固载催化材料都至少能重复使用催化5~8次。.其科学意义在于以孔性壳聚糖的空腔模拟细胞色素P450酶的空腔作用功能,以氮对中心金属离子的配位作用模拟P450酶的巯基轴向配位调节其催化活性作用,以盐键,离子键和共价键接枝金属卟啉模拟酶蛋白质对原卟啉的固载作用。这些作用都在一定程度上增加金属卟啉活化氧分子的机会,改变所固载金属卟啉的中心离子的电子结构,从而增强其稳定性和催化活性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
气载放射性碘采样测量方法研究进展
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
高压工况对天然气滤芯性能影响的实验研究
纳米偏铝酸金属卟啉催化材料的制备、结构和性能研究
基于金属卟啉的多孔仿生催化材料的制备及性能研究
壳聚糖定位大单体接枝制备热塑性衍生物、结构和性能
固载铜盐/离子液体催化剂的制备、结构及性能