The protective peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is synthesized by neurons, hydrolyzed by astrocytes and recycled by oligodendrocytes in brain. It is proposed that the tri-cellular metabolism of NAAG functions as the ‘‘operating system’’ of the brain, and is essential for maintenance of normal signal transductions and energy supplies that allows neurons to communicate successfully with one another. Our previous research has demonstrated that inhibition of NAAG peptidase and subsequent NAAG hydrolysis may afford protection for the brain by reducing glutamate excitotoxicity and enhancing the tolerance to traumatic brain injury (TBI). In this study, we plan to exploit the endogenous neuroprotection augmented by the transplantation of NAAG synthetase-activated neural stem cells (NAAGS/NSCs) to increase NAAG levels by enhancing NAAG synthetase expression and then regulate the tri-cellular neurotransmitter cycle against TBI. Moreover, we will use the lateral controlled cortical impact (CCI) TBI model in rats in combination with the in vivo microdialysis technique and non-invasive MRI spectroscopy measurement to monitor in real time the alterations in metabolite concentrations and provide new insights into the characteristics of the neurotransmitter release, neuroprotective signal transduction, cell death patterns, and behavioral outcomes after TBI. Furthermore, we will evaluate whether NAAGS/NSC transplantation improves neurological function more significantly than naive NSC transplantation after TBI and the possible mechanisms. This study will also expand the understanding of the neuronal-glial interaction during the secondary brain damage and provide a potentially novel therapeutic approach to the treatment of TBI.
保护性肽类递质NAAG通过神经/星形/少突三种细胞分别实现其合成/降解/回收,是维持突触间隙递质循环继而调控神经信号持续转导的重要机制。我们的前期研究发现抑制NAAG降解能有效阻断谷氨酸兴奋毒性级联反应从而提高鼠创伤性脑损伤耐受性;在此基础上,本研究尝试利用NAAG合成酶基因修饰的神经干细胞移植技术,通过增加NAAG合成,启动和放大NAAG的内源性神经保护作用;同时应用“大鼠控制性脑皮质损伤模型”,结合“在体微透析”及“MRS无创分析”两大递质实时监测技术,观察NAAG合成酶基因修饰的神经干细胞移植对脑损伤后“三细胞递质循环”、神经保护信号转导、细胞死亡模式、行为学预后等多个环节的影响,重点比较普通神经干细胞移植与NAAG合成酶基因修饰的干细胞移植启动神经修复及内源性神经保护的不同特点并阐明其机制。本研究有利于拓展对脑损害过程神经细胞与胶质细胞间相互作用的认识,为颅脑创伤治疗开辟新策略。
创伤性脑损伤(Traumatic brain injury, TBI)高居儿童及成人死残原因之首。近年来,以N-乙酰天冬氨酰谷氨酸((N-acetylaspartylglutamate,NAAG)和神经干细胞(Neural stem cell,NSCs)为核心治疗中枢及周围神经系统损伤的研究得到广泛关注。但NAAG易受NAAG肽酶(GCPII)水解而失效,单纯的神经干细胞移植又难以在早期对局部病理改变产生快速积极的影响。本实验通过小鼠可控性皮质撞击模型(CCI),探讨NAAG合成酶基因(rimkla)修饰的NSCs移植对TBI小鼠的影响。我们分别构建了含有”rimkla-GFP”和“rimkla-shrna-GFP”序列的慢病毒,在体外培养的NSCs感染慢病毒24小时后,采用Western blotting法检测NSCs中rimkla表达量,采用CCK8法和EDU法检测NSCs的增殖能力,采用免疫荧光法检测NSCs的分化能力。损伤后第一天,通过立体定位注射仪分别向损伤小鼠海马DG区注射PBS、NSCs(Vector)、NSCs(rimkla+)、NSCs(Scramble)和NSCs(rimkla-)。注射后第一天取脑组织,切片后行FJB染色、尼氏染色、Tunnel染色,观察小鼠海马DG区神经元坏死凋亡情况;行免疫组化观察小鼠海马DG区小胶质细胞和星形胶质细胞增生情况;行RT-PCR检测相关炎症因子;注射后第14天行水迷宫实验观察小鼠神经功能恢复情况。相比对照组,体外培养的NSCs(rimkla+)增殖能力增强;在诱导NSCs向神经元分化培养基中,NSCs(rimkla+)分化为神经元的比例最高。在体内实验中,与其他注射组小鼠相比,注射NSCs(rimkla+)小鼠的海马DG区神经元坏死和凋亡减少;激活的小胶质细胞和星形胶质细胞减少;相关促炎因子(IFN-γ,TNF-α,IL1β)基因表达量减少;水迷宫实验显示注射NSCs(rimkla+)的小鼠神经功能恢复更快。与此同时,注射NSCs(rimkla-)的小鼠表现虽好于注射PBS的小鼠,但与注射NSCs(Scramble)的小鼠相比,上述指标均表现出持平或一定程度的恶化。实验结果表明,在神经干细胞上转染rimkla基因后移植能够有效改善CCI模型小鼠预后。
{{i.achievement_title}}
数据更新时间:2023-05-31
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
视网膜母细胞瘤的治疗研究进展
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
当归补血汤促进异体移植的肌卫星细胞存活
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
阻断NAAG肽酶活性启动脑损伤后内源性神经保护的分子机制
诱导神经干细胞移植调控创伤性脑损伤后炎症反应的作用和机制
CRISPR/Cas介导的GCPII及III基因联合剔除启动脑损伤后内源性神经保护的研究
骨髓基质细胞促进脑缺血后内源性神经干细胞增殖分化的调控机制