The clustered protocadherins (Pcdhs) are single-pass transmembrane proteins present predominantly in the central nervous system. Pcdhs directly inhibit Pyk2 activation through their intracellular domain. Our previous data from Pcdh alpha (Pcdha) knockout mouse model revealed that genetic ablation of Pcdha results in enhanced Pyk2 activity and this leads to aberrant dendritic development. Despite these critical findings, the mechanism by which Pchda modulates Pyk2 phosphorylation and influences dendritic development has yet to be determined. The long-term goal of the proposed project is to elucidate the molecular mechanism that mediates Pcdha -Pyk2 interaction and to examine the physiological role of Pcdha-regulated Pyk2 activation in dendritic development. The long-term goal will be achieved through completing 3 specific aims. Aim 1 will determine the phosphorylation site on Pyk2 that response to Pcdha. We will conduct co-transfection experiments using Pcdha-pFLAG (wild type and mutations on Y694F, Y750F and Y812F) and Pyk2-pcDNA 3.1 (wild type and mutations on Y402f, K457A, Y579F, Y580F and Y881F) plasmids to screen the critical tyrosine phosphorylation residue or residues that bridge Pcdha-Pyk2 interaction. Aim 2 will examine the biological function of Pdcha-regulated Pyk2 phosphorylation in neuron cells in vitro. The important mutants indentified in Aim 1 will be transfected into neuron cells and their functions will be determined through phenotypic, skeletal ultrastructure analyses and the Rho-GTPase activity assay. Aim 3 will examine the physiological roles of Pcdha-regulated Pyk2 phosphoyrlation residue or residues in vivo. The critical mutants indentified in Aim 1 and 2 will be packaged into lentivirus and virus particles will be delivered into mouse brain via stereotaxi injection. Neuron development will be monitored in the control and treated animals to decipher the specific role of certain mutant in vivo. Expected result from the proposed research will provide critical information about molecular mechanisms governing dendritic development. Phosphoryation sites identified in the proposed research may be used as a drug target to treat Pcdha and other singling molecule related human mental diseases.
原钙粘蛋白(Pcdh)是表达于哺乳动物中枢神经系统的一类单次跨膜蛋白并可通过其胞内结构域结合Pyk2。本人对pcdha敲除小鼠研究发现,该蛋白的缺失可显著增加Pyk2酪氨酸磷酸化水平并影响神经元树突的发育。但二者的相互作用机制以及它们是通过何种途径调控树突的发育目前还尚未阐明。为此,本研究首先针对Pcdha和Pyk2不同酪氨酸位点设计突变,通过体外共转染细胞后蛋白生化分析明确二者之间的相互调控关系并筛出重要的酪氨酸磷酸化位点;其次,针对重要的酪氨酸位点,通过转染神经元后的表型分析、骨架微结构观察及Rho-GTP酶等骨架调节分子的检测明确二者调控树突骨架的分子机制;最后,针对筛选出的重要的酪氨酸位点包装病毒,经过脑立体定位注射后的神经元三维重建、骨架超微结构观察以及蛋白生化分析等方法对上述所得结果进行体内验证。预期研究结果对神经元树突发育机理以及人类相关精神类疾病的研究具有重要参考价值。
该项目题为“原钙黏蛋白alpha介导的Pyk2酪氨酸磷酸化调控神经元树突骨架发育的分子机制”。其立项的主要目标分为:1)明确Pcdha与Pyk2的相互调控关系;2)阐明二者调控神经元树突发育的分子机制。经过三年的项目执行期,本人将获得的重要进展逐项叙述如下: .首先,负责人以Pcdha敲除鼠为模型发现,Pcdha 的缺失显著影响海马神经元的发育并显著增加海马神经元细胞膜上Pyk2的酪氨酸磷酸化水平。体外克隆小鼠的Pyk2转染后发现,神经元中过表达Pyk2可以显著减少海马神经元的分叉数。此外,由于Pcdha基因的缺失可以显著增加Pyk2的酪氨酸磷酸化活性,故我们猜想Pyk2对海马神经元树突发育的调控可能依赖其激酶活性。为此,本项目就体外克隆的Pyk2基因的重要酪氨酸位点进行突变(Y402F)后转染神经元,结果发现Pyk2对海马神经元树突分叉的改变高度依赖其激酶活性,且Pyk2可以通过小G蛋白来调控海马神经元树突的发育及树突棘的形成(作为封面文章发表于J Mol Cell Biol, IF:8.432)。 .其次,为了确定Pyk2的在体功能,本项目采用Crispr-Cas9基因修饰系统构建Pyk2敲除小鼠并发现该激酶高度表达于成年小鼠的海马区;对该小鼠的行为学分析发现,该基因的敲除导致海马依赖的条件恐惧记忆显著增强,但声音相关的恐惧记忆以及对空间的学习记忆无明显改变;RNA测序结果表明,Pyk2基因敲除后神经元活性标记基因Npas4,Fos,EGR1,Arc和NR4A1表达明显增加;此外,本研究还针对Pyk2重要的自磷酸化位点Y402进行了定点突变后发现,Pyk2调控记忆过程不依赖其激酶活性;最后,通过对海马神经元的体内三维重建和体外活细胞观察分析发现, Pyk2作为支架蛋白能够控制锥体神经元形态发育和突触组装。综上所述,本项目发现了一种全新的恐惧记忆的调节因子,并针对这一分子构建了动物模型,这将可能对恐惧相关疾病,如创伤后应激障碍等疾病的认识提供一个研究平台,相关的成果已经整理并投稿(Submitted to PNAS)。.此外,本项目还通过PCR方法成功将Pcdha各个亚型克隆并构建到带有Myc标签的真核表达载体上(发表于核心期刊“江苏农业科学”)。通过对上述质粒体外转染后发现一个全新的受Pcdha和Pyk2 共同调节的下游底物p120 catenin(待投稿)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于灰色关联理论的球墨铸铁原铁液冶金状态评价模型
原岩应力对裂纹动态断裂行为的影响规律研究
基于骨架构建药剂真空预压法加固超软土试验
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
GRK调控神经元树突发育的机制研究
HPO-30/claudin调控线虫PVD神经元树突发育分子机制研究
神经元树突发育时MKLP1表达功能调控及其树突靶向机制
SMAD4酪氨酸磷酸化调控细胞功能的分子机制