Triboelectric nanogenerator exhibits the merits of green, high efficiency and wide material selection, which can be effectively used to harvest human body’s mechanical energy and convert it into electricity, serving as a stable energy supply to power wearable electronic products. Compared with traditional polymer films, the electrospun nanofibrous membrane possesses the advantages of high specific surface area, better air permeability and diverse fiber morphological structures, and it can be used as an ideal material to fabricate the triboelectric nanogenerator. Herein, we will investigate the inner relation of microstructure and power generation performance of nanofibrous membrane, release the triboelectrification mechanism so as to improve the power output performance. Recently, there have been some report that the hierarchical rough surface and semi-enclosed pore structure of triboelectric materials are beneficial for the generation and storage of triboeletric charges, however their formation conditions, regulation mechanism and triboelectrification mechanism are still not very clear. This project will discuss the effect of intrinsic structure and surface chemical modification on the formation of hierarchical rough surface and semi-enclosed pore structure, master the fabrication conditions and regulation techniques, reveal the production, storage and transfer rules of triboelectric charges, clarify the relationship among intrinsic structure, modification material properties and power output performance, realize the goal of energy density over 10 W/m2 and energy conversion efficiency over 15%, in oder to eventually meet the energy demand in the field of wearable electronic products.
摩擦纳米发电机具有绿色高效、材料选择范围广等优点,可以有效捕捉人体机械能,为可穿戴电子产品提供持续稳定的电能。较传统高分子薄膜,静电纺纳米纤维膜比表面积高、透气性好且纤维形貌结构多样,可作为摩擦发电的理想材料。本项目拟研究纳米纤维膜微观结构与摩擦发电性能间的内在关系,揭示纳米纤维膜的摩擦发电机理,从而提升其发电性能。近年来,有关摩擦材料多级粗糙和孔道结构有助于摩擦电荷产生和储存的研究始有报道,但其成型条件、调控机制及摩擦发电机理都尚未明确。本项目将阐明纳米纤维本体结构及表面化学改性对多级粗糙、半封闭孔道纳米纤维膜成型的影响规律,明确成型条件并掌握调控方法,揭示纳米纤维膜中摩擦电荷的产生、储存及转移规律,明晰纤维膜本体结构、表面化学性质与其摩擦发电性能之间的内在联系,实现纳米纤维膜能量密度高于10W/m2、能量转换效率高于15%的目标,以满足在可穿戴电子产品领域中的能源需求。
摩擦纳米发电机(TENG)利用摩擦起电和静电感应的耦合效应,能够将人体机械能转变成持续稳定的电能,是解决可穿戴电子产品持续绿色能源供给的有效途径之一。目前主要采用光刻蚀、等离子体蚀刻、电化学腐蚀等方法在材料表面构造纳米粗糙结构,从而提升摩擦电输出性能,但是这些制备方法所用设备昂贵、工艺复杂。而静电纺丝技术能够直接制备微纳米纤维,具有设备简单、成本低廉、可连续生产等优势。静电纺纳米纤维直径小、比表面积高、透气性优异且纤维形貌结构多样,由其制备的TENG有着平滑膜无法比拟的优势。本课题以纳米纤维膜为核心设计静电纺摩擦纳米发电机,并采用合理的后处理工艺进一步提高纤维膜的摩擦电学性能、力学性能和抗湿性能,以满足可穿戴能源更高输出性能需求和适应人体出汗后的高湿环境。通过电路设计,以静电纺摩擦纳米发电机为核心构筑自供能电子器件,并与日常服饰有机结合,设计出可穿戴能源装置用于人体机械能收集。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于SSVEP 直接脑控机器人方向和速度研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
基于静电纺纳米纤维膜的摩擦型纳米发电机的研究
可控多级微纳米纤维集合体过滤材料的制备及其过滤与透气机理研究
驻极纳米纤维膜的可控制备及其特异化过滤机理研究
纳米纤维防水透湿膜的可控制备及其特异化输运机理研究