Solid backfilling mining is a development direction in scientized mining and green mining. Controlling rock movement and ground subsidence, as a crucial part in solid backfilling mining, has been hotpots and difficulties in this research field. Aiming to compensate for the shortage in the rock movement and control theory of solid backfilling mining technology, we carry out a study on the interaction effect between the backfill and overlying strata movement in solid backfilling mining using the methods of combining laboratory tests, physics/numerical simulation, theoretical analysis and filed measured data verification. The main contents includes the following three core aspects: through studying on the stress distribution inside the backfill body, the stress distribution on the key strata under the effect of the backfill body and the backfill body creep characteristics, we reveal systematically the interaction law between the compression deformation characteristics of backfill body and the load of overburden strata; Based on the research on the effect of backfill body’s compression ratio on the failure/broken characteristics of the overlying strata (key strata) and the effect of the rapid compression deformation and creep deformation of backfill body on the overlying strata movement, we demonstrate the synergy deformation mechanism between the backfill body, overlying strata (key strata) and ground surface subsidence, and build the relationship model; and according to the research of the previous, we finally establish a dynamic mechanical calculation model of the mining disturbed rock mass, which take the deformation of backfill body and the failure/broken process of the overlying strata into account. These results should not only improve and develop the rock movement and control theory in the field of backfilling mining technology, but also provide the technology support for the projects of extracting some coal resources located under village houses/railway/water bodies and other residual or difficult mining coal resources.
固体充填开采是科学采矿和绿色采矿的重要发展方向,岩层移动与地表沉陷控制是其核心内容之一,因此成为研究的热点和难点。本项目针对固体充填开采岩层控制理论研究中存在的不足,综合采用实验研究、理论分析和实测验证的方法开展充填体与覆岩移动的交互影响研究。主要内容包括:通过充填体内部应力分布特征、充填体影响下覆岩应力分布规律和充填体的蠕变特性的研究,得到充填体压实变形特性与覆岩移动荷载之间的交互影响规律;通过研究充实率对覆岩(关键层)破坏特征的影响规律、充填体快速压实阶段/蠕变阶段对覆岩移动影响作用,揭示充填体、覆岩(关键层)及地表三者之间的协同变形机理,建立协同变形关系表达方式;综上成果,构建顾及充填体变形和覆岩移动破坏过程的动态力学模型。研究成果无论对充填开采岩层控制理论体系完善和发展,还是对解放“三下”压煤以及残留、难采煤炭资源等实际工程应用均具有重要的理论和现实意义。
本项目针对固体充填开采岩层控制理论研究中存在的不足,通过实验室测试和理论分析的方法,研究了固体充填材料的快速压实阶段和蠕变阶段的特征,得到了充填体充实率与充填材料压实特性与覆岩荷载之间的关系模型。采用物理与数值模拟、理论分析和实测验证的方法,研究了不同充实率下,覆岩(关键层)移动破坏特征,揭示了充填体充实率、覆岩关键层及地表三者之间的协同变形规律;基于上述成果,建立了充填开采覆岩移动变采厚分层传递预测模型;最后,采用InSAR、三维激光扫描等测绘新技术对充填开采地表沉陷进行监测。取得了如下主要研究成果:.(1)通过对五种不同固体充填材料的微观特性、快速压实阶段和蠕变阶段的压实特性进行测试分析,得到了充填体材料的快速压实阶段的应力-应变曲线符合指数函数关系,蠕变阶段的应力-应变曲线呈现线性函数关系,在快速压实阶段的变形量占绝大部分,而蠕变阶段变形量相对较小;建立了在覆岩荷载影响下的充填体压实特性与充实率之间的函数关系。.(2)通过相似模拟实验、数值模拟实验以及统计分析的方法,研究了不同充实率下,覆岩(关键层)移动破坏特征,结果表明:充实率对覆岩移动的控制作用,随着充实率的增加,覆岩移动变形减小;覆岩移动呈现分层传递的特征,且至下而上逐层递减,到地表时下沉值最小。充填体充实率弱化了关键层对覆岩控制作用;充实率越大,关键层在覆岩移动中的作用越小,即关键层对覆岩移动的影响与充填体充实率成反比。.(3)建立了充填开采覆岩移动变采厚分层传递预测模型,分析了模型参数的获取方法,并通过实例验证了该预测模型精度,平均相对预测误差在10%左右。.项目研究成果对充填开采充实率设计、覆岩及地表移动变形精确预计提供支撑,在解放“三下”压煤以及残留、难采煤炭资源方面具有应用前景。.在项目执行期间,发表学术论文12篇(其中SCI论文4篇),授权发明专利2项,参加学术会议8次,培养硕士研究生4名,完成了既定研究计划。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
外泌体在胃癌转移中作用机制的研究进展
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
具有随机多跳时变时延的多航天器协同编队姿态一致性
早孕期颈项透明层增厚胎儿染色体异常的临床研究
陡倾矿体充填开采岩移规律与充填体稳定性研究
陡倾金属矿充填法开采引起的岩体移动规律及其发生机制
煤矿固体充填体密实度控制机理与方法研究
Y型通风沿空留巷巷旁充填体及覆岩运动影响的力学机理研究