Micro-pressure sensors applied in key development areas of manufacturing such as aerospace, advanced rail transport, and biomedicine are in urgent need. To solve the problems that the sensitivity is in contradiction with the overload resistance and the measurement accuracy is susceptible to the vibration interference, this project focuses on the cooperation between sensitivity and overload resistance and the dynamic interference decoupling of the micro-pressure sensor. Firstly, through studying the stress distribution of the sensing element and exploring the separation method between the stress sensitive region and the high stress region induced by overload, the sensing element model with high sensitivity and high overload resistance will be built. Simultaneously, the geometry optimization model will be constructed by the combination of the finite element loop computing and the multivariate fittings. Secondly, by establishing the physical model under dynamic interference and illuminating the mechanism of the vibration influences on the sensing element, the interference suppression method based on differential decoupling will be proposed. Finally, both the fabrication and testing of the sensor die will be implemented, and the rationality of the theoretical study will be verified. This research will provide not only the new idea for the obvious improvement of the sensitivity and overload resistance, but also the new method for dynamic interference active suppression. Thus, it will lay the foundation for developing high performance micro-pressure sensors used in key development areas of manufacturing.
微压传感器在航空航天、先进轨道交通、生物医学等制造业重点发展领域需求迫切。针对压力传感器研发中存在的灵敏度与过载阻抗间的矛盾、压力测量精度易受振动干扰影响的问题,本项目致力于微压传感器灵敏度与过载阻抗协同及动态干扰解耦研究。首先,研究传感器敏感结构应力分布规律,探寻应力敏感区与过载所致高应力区分离方法,提出兼具高灵敏度与高过载阻抗的传感器敏感结构模型。同时,结合有限元循环计算与多元变量拟合算法建立结构优化模型。其次,构建传感器在动态干扰下的物理模型,阐明振动干扰对传感器敏感结构的作用机理,提出基于差动工作机制的动态干扰解耦方法。最后,完成传感器芯片的制作与测试,并验证理论研究的合理性。本项目研究将为压力传感器灵敏度与过载阻抗的显著改善提供新思路,为动态干扰的主动抑制提供新方法,从而为研发制造业诸多重点领域用高性能微压传感器奠定基础。
随着我国对制造业重点发展领域的大力推进,传感器作为必不可少的基础技术和装备核心备受关注。尤其,基于MEMS技术的高性能微压传感器在航空航天、先进轨道交通、生物医学等制造业重点发展领域需求迫切。项目针对高性能微压传感器研发中存在的灵敏度与过载阻抗间的矛盾、测量精度易受振动干扰影响的问题,开展了灵敏度与过载阻抗协同及动态干扰解耦研究。首先,开展了传感器敏感结构应力分布规律与重构方法研究,提出了可实现应力敏感区与过载所致高应力区分离的辐射对称岛敏感结构模型,并具体研究了四种辐射对称岛敏感结构模型。基于有限元循环计算与多元变量拟合算法,构建了辐射对称岛传感器敏感结构优化模型;基于振动力学与有限元相关理论,研究了振动加速度干扰对辐射对称岛敏感结构作用的量化表征方法,分析了结构特性参数与谐振频率间的关系;基于小挠度理论,探索了辐射对称岛传感器输出信号线性分解方法,提出了辐射对称岛传感器动态干扰差动解耦方案;根据辐射对称岛传感器敏感结构特点,设计了相应微加工工艺流程,完成了两批次不同敏感梁厚度的辐射对称岛传感器芯片的制作;研究了辐射对称岛传感器芯片的低应力封装方法,并完成了对辐射对称岛传感器样机性能的全面测试,通过两批次传感器芯片间的对比分析,研究了刻蚀深度偏差对传感器输出特性的影响规律。. 通过本项目的实施,掌握了灵敏度与过载阻抗协同优化方法,构建了高性能辐射对称岛传感器敏感结构模型及其优化模型;提出了基于差动工作机制的动态干扰解耦方法;获得了高性能辐射对称岛传感器样机,其主要性能指标满足研究目标要求。本项目的研究结果可为研发兼具高灵敏度、高过载阻抗以及优异动态特性的高性能微压传感器提供理论与技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
内点最大化与冗余点控制的小型无人机遥感图像配准
多维力传感器实时动态解耦-补偿方法及实现
基于SOI高灵敏高过载梁膜结构微压传感器研究
磁性液体微压差传感器动态建模与实验研究
分布式协同解耦进化算法在无线传感器网络覆盖与数据传输的研究