Chemicals production from water and CO2 is of great significance for the sustainable development. Microbial electrosynthesis (MES) is a novel bioelectrochemistry technology, which can realize the resource recovery from wastewater and CO2-laden emissions. However, as the practical application of MES is currently restricted by the limited product rate and also the limited product spectrum, a novel bioelectrochemical integrated system is constructed for the production of medium-chain carboxylates (MCCs) from sequential reduction of CO2 at a high rate in this study. The integrated system relies on the electrocatalyst-assisted MES to promote CO2 conversion, and it takes advantage of bioelectrochemical methods to promote the chain elongation process for specific products. This project aims to identify the key inhibitors of electrochemical and microbial catalyst, and to improve the biocompatibility of composite electrodes. Thereafter, it focuses on the construction of an efficient electrical-biological hybrid cathode, to achieve an effective distribution of multiple electronic donors and acceptors. Furthermore, the key metabolic pathway of CO2 transformation and its response mechanism to various environmental factors are expected to be elucidated in this project. Finally, this project offers strategy to improve the overall performance of the integrated system, by adjusting the key operating parameters. Thus, this project provides the theoretical basis for the electrochemical-microbial interaction, and also offers fundamental support for the resource recovery from pollutants based on bioelectrochemistry technology.
利用水和CO2生产有机化合物对可持续发展具有重大意义。微生物电合成(microbial electrosynthesis,MES)技术是一种新型的生物电化学技术,可望同时实现污水和CO2的资源化利用。针对现有MES产物生成速率低且种类有限的技术瓶颈,本课题围绕高速转化CO2合成中链脂肪酸(medium-chain carboxylates,MCCs)的应用目标,构建生物电化学耦合系统。耦合系统利用电催化剂辅助的MES促进CO2转化;利用生物电化学手段强化碳链增长过程。本研究拟揭示微生物活性和电催化剂活性的关键抑制物,提高生物相容性;构建电化学/微生物融合的复合阴极,实现多种电子供体和电子受体的有效分配;阐明CO2转化的代谢途径及其对环境因子的响应机制;优化工艺参数提升耦合系统性能。本项目的开展将丰富电化学和微生物的相互作用理论,为基于生物电化学技术的污染物资源化利用提供基础性支撑。
微生物电合成(Microbial electrosynthesis,MES)耦合污水处理和绿色生物制造,回收碳源和能源,是国际前沿研究热点并服务国家战略需求。针对现有MES产物生成速率低且种类有限的技术瓶颈,本课题围绕高速转化CO2合成中链脂肪酸(MCFAs)的应用目标,构建生物电化学耦合系统。明确电极驱动微生物自养固碳及混合营养的碳能代谢机制;建立基于双电子供体体系的电极驱动微生物代谢调控方法;研发基于微生物电合成的污水资源化耦合新技术。本项目的开展将丰富电化学和微生物的相互作用理论,为基于生物电化学技术的污染物资源化利用提供基础性支撑。受本项目资助,共发表SCI论文12篇,申请专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
外泌体在胃癌转移中作用机制的研究进展
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
猪链球菌生物被膜形成的耐药机制
低温混菌发酵生产中链脂肪酸的机理研究及其过程强化
生物电子介导的短链脂肪酸互营氧化产甲烷机理研究
短链脂肪酸受体介导肠道微生物调节猪脂代谢的分子机理
奶山羊MAT基因调控羊奶短、中链脂肪酸合成机理的研究