The energy raising of energetic materials (EMs) can increase the weapons delivery capability, enhance the equipment maneuvering ability and the damage power enhancement, as well as promote the upgrading of weapon system, and even promote the transformation of the pattern of war. However, the contradiction between energy and safety of EMs and the existence of the upper limit of energy threshold of chemical energy severely restrict the energy enhancement of EMs. For exploring new mode of energy (enhancement) of EMs, the project would study the interaction principle of laser to energetic cluster from the Coulomb explosion, due to the chemical coupling of directed laser to EMs. Special device of energetic materials which containing steam jet condensation for forming clusters would be designed and we also obtain optimization of process flow for stable clusters and particle cluster beam and study the decomposition of the cluster under heat and power and establish the relationship between cluster sensitivity, chemical stability, structural stability of physical characteristics and dimensions. What’s more, based on in situ laser loading Coulomb explosion, the key parameters such as explosion temperature, ion composition and debris kinetic energy were measured for explaining energetic materials and chemical coupling of laser directional energy. The research of this project not only provides a new way for the exploration of high energy density of EMs, but also enriches the understanding of the response of EMs to the laser, and can provide theoretical support for the design of laser initiation technology together with photosensitive materials.
含能材料的能量提升能够增加武器的远程投送能力,增强装备的机动能力和毁伤威力,推动武器系统的升级换代,甚至推动战争模式的变革。但含能材料能量和安全性之间的矛盾以及化学能存在能量上限阈值等因素严重制约了含能材料的能量提升。本项目利用激光与含能团簇相互作用产生库仑爆炸的原理将激光定向能与含能材料化学能进行耦合,探究提升含能材料能量的新模式,将含能材料蒸汽经喷射冷凝得到颗粒极小的团簇,阐释团簇形成机制并获得稳定的团簇束流,研究团簇在热、电、力作用下失稳分解规律,建立团簇感度特性、化学稳定性和结构稳定性等物性特征与尺寸的依赖关系,在此基础上原位激光加载实现库仑爆炸,测量爆炸温度、离子成分、碎片动能等关键参数,阐释含能材料化学能与激光定向能的耦合规律。本项目的研究不仅为更高能量密度含能材料的探索提供新途径,还能丰富含能材料对激光响应规律的认识,为激光起爆技术、光敏含能材料设计提供理论依据。
含能材料的能量提升能够增加武器的远程投送能力,增强装备的机动能力和毁伤威力,推动武器系统的升级换代,甚至推动战争模式的变革。但含能材料能量和安全性之间的矛盾以及化学能存在能量上限阈值等因素严重制约了含能材料的能量提升。本项目利用激光与含能团簇相互作用产生库仑爆炸的原理将激光定向能与含能材料化学能进行耦合,探究提升含能材料能量的新模式。在项目实施过程中,项目组设计并搭建了含能团簇制备装置,采用多种物理化学方法构筑含能团簇,包括TATB团簇和BPTAP棒状、LLM-105微管阵列、BTF自支撑片状和TATB自支撑梳子状阵列结构类团簇,揭示了含能团簇物性特征与其微观结构之间的关系。在此基础上,通过超强功率激光(1018W/cm2)原位加载技术,开展了多种结构含能团簇与强激光的相互作用实验,获得了产物离子成分、离子能谱、电子能谱和元素光谱等关键参数,实现了TATB自支撑梳子状阵列结构的库伦爆炸,发现通过调控TATB阵列直径,可以调控库伦爆炸效应的强度。然而,在同一功率激光加载下,BTF自支撑片状结构并没有发生库伦爆炸,说明结构特征是影响库伦爆炸效应的关键因素。进一步地,采用PIC数值模拟方法,获得了含能分子团簇结构在强激光场中的离解过程和反应图像,阐释了含能团簇在强激光场作用下的离化过程和机制。本项目的研究成果,不仅为更高能量密度含能材料的探索提供了新途径,丰富了含能材料对激光响应规律的认识,为激光起爆技术、光敏含能材料设计提供科学指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
跨社交网络用户对齐技术综述
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
含Al、Rh混合金属团簇物性的计算研究
团簇能损的非线性效应研究
全氮含能材料高压理论设计及其物性研究
微团簇在气体和大尺度团簇中的库仑爆炸