Granular materials show significant energy dissipation and buffer performance under impact loads, and have strong application prospect in various industry fields. However, affected by the particle shape, broken, flow state, boundary constraints, structural types and other factors, the mechanism and effect of buffer energy consumption should to be investigated deeply with the corresponding experimental verification. Thus, this proposed project will develop irregular particle models with dilated polyhedral element and hyperquadric element considering the non-linear contact model to analyze the energy dissipative path of impacted particles; Considering the interaction between the granular material and the structure, the coupled DEM-FEM model of the granular materials and the engineering structure will be developed considering the corresponding fast contact search method and GPU-based high performance parallel algorithm. Through the numerical analysis and experimental verification of the impact process of granular materials, the propagation path and the energy dissipation law of the impact load will be revealed on the micro scale,and the trajectory and the dynamic characteristics of the structure will be determined on macro scale. This proposed project will reveal the basic physical and mechanical properties of the granular material with the numerical analysis and the physical experiments via its energy dissipation characteristic, and also provide strong scientific foundation for the reasonable structure parameter design under the impact conditions into granular materials.
在冲击荷载作用下,颗粒材料会呈现出显著的能量耗散和缓冲性能,并在不同工程领域具有很强的应用前景。然而受颗粒形态、破碎、流动状态、边界约束、结构形式等因素的影响,其缓冲耗能机理和效果还需深入研究并开展相应的试验验证。为此,本申请项目将采用扩展多面体单元和超二次曲面单元发展非规则颗粒单元的非线性接触模型,并在细观尺度上分析颗粒间能量的耗散途径;考虑颗粒材料与冲击结构的相互作用,发展颗粒离散元与冲击结构有限元耦合的DEM-FEM耦合模型,并建立相应的快速搜索方法和基于GPU的高性能并行算法;通过冲击结构对颗粒材料冲击过程的数值分析和试验验证,在细观上揭示冲击荷载的传播途径及能量耗散规律,在宏观上确定冲击结构的运动轨迹和动力学特性。本申请项目通过对颗粒材料缓冲耗能特性的数值分析和试验测试可进一步揭示颗粒材料的基本物理力学性质,并为结构物在颗粒材料中的冲击过程和合理参数设计提供有力的科学依据。
在冲击荷载作用下,颗粒材料会呈现出显著的能量耗散和缓冲性能,并在不同工程领域具有很强的应用前景。然而受颗粒形态、破碎、流动状态、边界约束、结构形式等因素的影响,其缓冲耗能机理和效果还需深入研究并开展相应的试验验证。为此,本项目采用超二次曲面单元和球谐函数单元发展了非规则颗粒单元的非线性接触模型,并在细观尺度上分析颗粒间能量的耗散途径;考虑颗粒材料与冲击结构的相互作用,发展颗粒离散元与冲击结构有限元耦合的DEM-FEM耦合模型,并建立相应的快速搜索方法和基于GPU的高性能并行算法;通过冲击结构对颗粒材料冲击过程的数值分析和试验验证,在细观上揭示冲击荷载的传播途径及能量耗散规律,在宏观上确定冲击结构的运动轨迹和动力学特性。在此基础上,对航空航天着陆器和返回舱着陆返回过程中的冲击缓冲特性进行了DEM-FEM耦合分析,取得了很好的工程应用。本项目通过对颗粒材料缓冲耗能特性的数值分析和试验测试揭示颗粒材料的基本物理力学性质,并为结构物在颗粒材料中的冲击过程和合理参数设计提供有力的科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
MSGD: A Novel Matrix Factorization Approach for Large-Scale Collaborative Filtering Recommender Systems on GPUs
基于离散元模拟和透明土模型试验的圆柱快速贯入颗粒材料过程动力分析
循环荷载下饱和砂土结构变化的微观试验和离散单元模拟
边坡地震破坏过程和塌落体影响范围的离散元模拟及试验验证
复杂形态颗粒流动的GPU并行离散元分析