How to efficiently coupling and coupling operation of renewable energy and hydrogen energy by key technologies is an urgent problem to be solved. The joint modeling and optimal control of 100% renewable park energy system based on hydrogen storage has become one of the typical and core issues of renewable energy coupled hydrogen energy storage. The energy supply system for 100% renewable energy and hydrogen energy coupling park has complex structures, large differences in inertia scale of interface dynamic model, different time scales of coordinated control strategy, and difficulty in on-line refinement optimization and regulation of energy. Based on the energy system structure and flexible energy supply scheme of 100% renewable energy coupled with hydrogen energy typical park, this project establishes a simplified port dynamic model of complex distributed parameter aggregation, dimensionality reduction and order reduction for the electric-hydrogen generation-hydrogen storage (heat) fuel cell system adapted to the dynamic scale of renewable energy, explores the dynamic delay mechanism of electric-hydrogen and electric-thermal conversion between hydrogen production and fuel cells, proposes a coordinated control strategy of independent/interconnected operation and seamless switching of park system based on multi-inertia scales of electricity, gas and heat, and proposes an on-line rolling optimization method of layered refinement of multi-quality energy sources of electricity, hydrogen and heat in park system. Through the research of this project, the theoretical breakthrough of 100% renewable energy and hydrogen energy advanced coupling, dynamic joint modeling and online optimal control will be realized, which will lay a solid theoretical foundation for the key technology transformation of renewable energy coupled hydrogen energy.
氢能作为未来城市能源结构中重要的二次能源,与可再生能源如何实现零碳高效耦合、能源交互运行等关键技术亟待解决。针对100%可再生能源与氢能耦合园区能量交互结构复杂、元件端口动态模型惯性尺度差异较大、端口间协调控制时间尺度不一、能量交互在线精细优化困难等问题,本项目以氢能作为园区能源主要载体,研究基于直流汇集的100%可再生能源耦合氢能典型园区能源系统结构及能量灵活交互方案,建立适应可再生能源动态尺度的电-制氢-储氢(热)-燃料电池系统复杂分布参数集总化降维降阶简化端口动态模型,探索制氢与燃料电池电-氢、热转换动态延时机理,提出基于电、气、热多惯性尺度的系统独立/联网运行及无缝切换协调控制策略,构建系统多质化能源能量交互函数,并提出分层精细化在线滚动优化方法。通过本项目研究,将实现100%可再生能源与氢能联合建模及在线优化控制的理论突破,为可再生能源耦合氢能在园区零碳工程化奠定坚实的理论基础。
我国建筑领域的运行碳排放占据总碳排放量的较大份额,这对我国实现全行业深度脱碳提出了挑战,可再生能源与氢能的快速发展为建筑/园区提供了一种清洁与高效的能源解决方案。本项目基于电-氢耦合的能源形式,首先提出了建筑/园区能源供给结构,并基于对其能量交互方式的深入分析,进一步构建了其多能互补耦合模型;然后,针对氢能建筑未来高度集成化的发展需求,提出面向氢能建筑/园区的三端口变换器拓扑结构与协调控制策略;其次,针对单体氢能建筑提出了基于模型预测控制的多目标优化能量管理方法;针对园区电-氢-热能源系统提出了一种基于交替方向乘子法的双层能量优化管理方法;最后,以中国北方典型建筑/园区系统为仿真算例,验证了所提多端口变换器结构与其协调控制策略在多能互补建筑/园区中的优势与集成供能的可行性;验证了所提建筑/园区能量管理方法的可靠性,实现了建筑/园区电-氢-热多能源能量的精准管控。本项目的开展为建筑终端用能转型提供了指导方案和技术支撑,有望推动电-氢产业的多领域的融合式发展,助力我国实现“双碳”目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
面向新能源消纳的工业园区负荷虚拟储能特性建模与控制方法研究
基于柔性储能技术的可再生能源发电系统广义动量补偿控制研究
面向能源集成的压缩空气储能系统建模与优化研究
可再生能源驱动的可伸缩视频通信系统建模与优化