Apply to develop the magnetic anomaly detector used for antisubmarine warfare, geomagnetic navigation system, ocean exploration system, the high-precision magnetometer have been attracted broad attention. Different from the universal method to detect the magnetic based on the optically detected magnetic resonance (ODMR), a novel method to detect the spin-magnetic resonance used the coupling effect between the microwave and the electron spin in the diamond nitrogen vacancy (NV) color centers have been proposed in this project, which have been used to develop a novel sensing method. Based on this method, three main of technical problem based on the ODMR technology can be improved. First, in detection accuracy, the signal to noise ratio (SNR) of the spin-magnetic resonance signals can be improved based on the high quality resonant effect between the microwave and the spin, which can improve the SNR to compare the method used the fluorescence signals to detect the population of spin-state, and the sensitivity of sensors can also be improved. Second, in the micro manufacturing, the microwave resonance structures and the electron spin structures have been integrated in one chip based on the MEMS technology. The enormous optical system and complicated the sequential control system of ODMR technology can all be replaced. Last one, applications in information detection, the sensing signals can be calculated from the frequency shift of microwave resonance frequency, which was easier than the method to detect the evolution phase accumulated using the microwave pulse controlled by the complicated circuit system. And the method provides a new approach and idea to design and integrated manufacture the high precision atomic spin sensors.
该项目面向超高精度磁异常反潜定位、地磁导航、海洋勘探定位等磁场探测应用技术发展需求,拟利用金刚石NV色心自旋结构中微波与自旋共振耦合探测自旋磁共振方法,取代光与自旋耦合的光探测自旋磁共振方法,探索一种新型高精度原子自旋磁传感方法。拟采用微波与自旋高Q值共振耦合探测信噪比,解决荧光探测自旋布居探测磁共振信号对比度低、信噪比差的问题,提高传感精度;拟采用微波共振结构与NV色心电子自旋结构平面一体化制造方法,解决光探测磁共振方法光路系统、时序控制系统庞大难以微型化集成的技术难题;拟采用微波共振频移检测方法,解决光探测磁共振方法中的脉冲时序调控自旋态演化相位累积检测方法的复杂控制与解算难题,为全固态原子自旋磁传感器的微型化制造、高精度检测研发提供一种新的研究思路和研究基础。
面向超高精度磁异常反潜定位、地磁导航、海洋勘探定位等磁场探测应用技术发展需求,提出一种新型高精度原子自旋磁传感方法,重点研究了微波与自旋共振耦合探测磁共振方法、自旋传感多功能单元集成制造、磁信息解算及集成器件测试表征等关键科学问题研究,为自旋传感器件的微型化、高精度制造提供一种新的研究思路。.按照项目计划,完成了研究内容具体如下:. (1)微波自旋共振耦合探测磁共振机理方法。建立微波与自旋共振耦合探测磁共振方法,通过自旋磁共振机理,以荧光强度表征NV色心电子的分布,实现微波对自旋磁共振信号的共振检测;以电子自旋相干与微波能量共振吸收效应为基础,建立了一种高灵敏度微波与自旋共振磁传感方法。.(2)微波共振结构与自旋结构平面集成加工方法。提出了一种激光直写量子功能结构制造方法,构建了一种微波腔与Ω型天线微纳集成模型,微波场非均匀性优于0.5%,提高了磁共振信息检测灵敏度;提出了微波腔、微波激光天线、纳米线激光器、自旋结构等平面集成结构,探索了一种自旋传感多功能结构平面集成方法。.(3)磁场信息解算与集成系统测试表征。建立磁场信息与自旋共振频率之间的关系,量化微波共振频移与磁场之间的关联模型;提出一种微波调制解调自旋磁共振信息方法,通过频率锁定技术来实现对色心自旋信息的锁定,结合双路差分检测方法,将温度噪声抑制了10倍,初步研制了自旋传感集成系统,通过测试磁噪声优于100 pT/√Hz。.成果方面:在项目资助下,发表中SCI论文11篇。申请国家发明专利5项,其中4项授权。培养及协助培养博士研究生1名,硕士研究生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于二维材料的自旋-轨道矩研究进展
一类基于量子程序理论的序列效应代数
肝脏多b值扩散心率因素的评价
肌萎缩侧索硬化患者的脑功能网络研究
针对耦合自旋体系的核磁共振多脉冲优化及其应用
芯片级固态核磁共振力/磁传感基础研究
微波光子辅助的倾斜光纤光栅表面等离子体共振传感基础研究
电子自旋共振逆效应中的微波辐射研究