Robot-assisted walking plays an extremely important role in the rehabilitation of patients with spinal cord injury. It can effectively activate the motor cortex and the rhythmic motor center of the spinal cord, and promote the recovery of nerve function and limb function. However, most of existing walking assistive exoskeletons are characterized with fixed axes of rotation, which often led to human-robot joint misalignment in the process of walking assistance. In the early stage, the applicant has successfully developed a fixed-axis walking assistive exoskeleton, but its motion compatibility is poor due to the joint misalignment between robots and human users, and the symmetric design of the driving system also limits its efficiency. In this project, based on previous research works, the applicant proposes to develop a novel robotic knee exoskeleton with joint self-alignment and optimal driving mechanism for walking assistance. First is to use an optical method to detect the position of the dynamic knee joint in real-time, then control the exoskeleton being automatically aligned with it (walking velocity no less than 4 km/h). Further, by considering asymmetric/nonlinear properties of human gait and dynamic knee joint, the robotic driving mechanism will be investigated and explored to optimally match people’s natural gait. This project is committed to solving scientific and technical problems such as joint misalignment and drive capability mismatch of robot-assisted walking, improving robotic driving efficiency and walking assistive effectiveness, enhancing human-robot integration, and providing theoretical guidance for developing next generation of full-limb exoskeleton technology.
机器人辅助行走在脊髓损伤患者康复治疗中起极其重要的作用,能有效地激活运动皮质和脊髓节律性运动中枢,促进神经和肢体功能恢复。然而,目前大部分助行外骨骼都属于为固定转动轴系统,使用过程中往往造成人机关节错位。前期,申请人已研制出了一套助行膝关节外骨骼,但其因人机关节错位而运动兼容性较差,拮抗对称驱动方式也限制了其驱动效率。本项目中,申请人在前期研究基础上,研发一种新型融合动态轴和最优驱动机理的助行膝关节外骨骼,拟采用光学法实现人体膝关节动态轴位姿的实时检测,进而控制外骨骼转动轴实时与之对齐(满足行走速度不低于4千米/小时);同时,针对人体步态运动学/动力学的非对称/非线性属性及膝关节动态轴规律,探索匹配于人体自然步态的最优外骨骼驱动机理。本项目致力于解决行走辅助过程中关节错位和驱动能力不匹配等难题,实现人机高度共融,为发展下一代全下肢外骨骼技术提供理论支撑。
机器人辅助行走在康复治疗中起极其重要的作用。然而,目前大部分助行外骨骼都属于为固定转动轴系统,使用过程中往往造成人机关节错位。本项目致力于研发一种新型融合动态轴和最优驱动机理的助行外骨骼,解决行走辅助过程中关节错位和驱动能力不匹配的问题,为发展下一代下肢外骨骼技术提供理论支撑。本项目针对人体膝关节动态轴测定方法及高度人机共融的下肢外骨骼系统及其辅助策略展开研究,突破了以下关键技术:1)提出一种可实时检测人体膝关节矢状面动态转动轴的测定方法,并基于该方法设计了一套基于平面转动-平移-转动构型的轻量化、可穿戴测量系统,成功将人机关节不对齐减少51%且测量误差小于2毫米;2)设计并优化气动肌肉下肢外骨骼,提出了一种基于滑模理论的关节位置、刚度同步控制算法,实现了外骨骼与人体下肢运动学和刚度的协同匹配;3)开发了一套基于串联弹性柔性驱动器的绳驱下肢外骨骼系统,同时提出了融合自然行走步态的层级控制策略并完成了临床验证。本项目研究成果有潜力扩展到其他人体增强型外骨骼领域,以提升动态人机交互下的共融性和安全性。相关成果共计发表学术论文20篇,其中高水平SCI学术论文12篇,国际学术会议论文7篇,中文期刊论文1篇;申请专利5项,其中授权发明专利1项,实用新型专利4项。培养硕士研究生2人。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
基于二维材料的自旋-轨道矩研究进展
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
低能耗助行方法及无动力助行外骨骼优化设计
膝关节骨性关节炎患者的柔性助行外骨骼设计与控制方法研究
外骨骼助行机器人复杂环境运动步态的耦合仿生设计研究
面向外骨骼助行机器人的柔顺人机连接原理及实现方法研究