Polymer-metal hybrid nanomaterials have been proven to be promising in emerging fields of green chemistry, biological technology and new energy source. The exploring of highly-ordered complex structures and also sophisticated functions are the main trend to the future development. This project will learn from the nature at molecular level, mimicking the dynamic features of supramolecular architectures in metalloproteins. To this end, a range of well-defined NH2-based reversibly reactive water-soluble copolymers, which consist of the comonomer units similar to the peptide amino acid structures and have different compositions and sequences of the comonomer units, will be synthesized via visible-light-mediated iterative RAFT polymerization in aqueous media at ambient temperature; a variety of aldehyde-functionalized compounds including vitamin B6 will be selected. These materials will utilized as water-soluble subcomponents. The polymer-metal hybrid nanomaterials that have unique properties of selective coordination and dynamic exchange will be exploited via subcompoment self-assembly in aqueous media at ambient temperature, using the abundent first-row transition metal ions as the templates, such as iron, cobalt, nickel, copper and/or zinc ions that are commonly exist in the natural metalloproteins. The correlation of supramolecular architectures with subcomponent structures and the compositions of aqueous media will be studied. The kinetic effects including the assembly-triggered diffusion control and the coordination-induced catalysis will be explored.The unique properties of selective coordination and dynamic exchange in the nanoscale-confined water-soluble polymers will be developed. Accordingly, this project will shed new light on the effect of the local nano-confinement of water-soluble polymer chains on the unique properties of selective coordination and dynamic exchange, and thus the dynamic evolution of supramolecular architectures. In short, this project will guide us a new avenue towards sophisticated biomimetic functional polymer-metal hybrid nanomaterials, and inevitably extend the applications and new insight into the nature of visible- light-mediated ambient aqueous iterative RAFT polymerization that was most recently developed by our group.
高分子金属杂化纳米材料在绿色化学、生物技术、新能源等新兴领域具有广泛应用前景,探索复杂有序结构和开发高级功能是其未来发展方向。本项目拟从分子层面仿生,模仿生物蛋白的金属配位动态构建特征。采用可见光调控室温水溶液迭代RAFT聚合,合成类似肽链氨基酸结构单元、共聚序列各异并具有动态反应特性的伯胺衍生水溶性高分子;筛选维生素B6等醛基化合物;采用铁、钴、镍、铜、锌离子为模板,通过室温水溶液亚组分自组装,制备具有选择性配位和动态交换特性的高分子金属杂化纳米材料。探讨组分和介质对超分子构筑的影响;揭示组装诱导的介质扩散和配位催化等动力学效应;探求水溶性高分子纳米限域的选择性配位和动态交换。本项目的实施,将实现水溶性高分子纳米限域的选择性配位和动态交换及其超分子构筑的动态演变,为设计构建功能仿生的高分子金属杂化纳米材料提供新思路,充实并拓展我们最新提出的可见光调控室温水溶液迭代RAFT聚合新方法。
高分子金属杂化纳米组装材料在绿色化学、生物技术、新能源等领域具有广泛的应用前景,探索其复杂有序结构和开发其高级功能是材料科学的前沿主流方向。在本项目资助下,我们成功实现了仿赖氨酸单体可见光引发迭代RAFT室温水溶液聚合及其高分子配位驱动多级组装,圆满完成了胱胺高分子设计合成、反应驱动程序组装、催化驱动多级组装和超分子自分类,首次发现了组胺单体低温加速聚合效应和及其高分子静电-配位协同单链组装制备单向分子传送功能的分子机器,率先提出了可见光引发聚合诱导自组装和可见光引发聚合诱导静电自组装。以上研究展示了水溶性高分子仿生设计合成和亚组分自组装科学价值,为制备高分子仿生纳米材料器件提供了新平台。上述研究成果发表Angewandte Chemie International Edition、ACS Macro Letters、Macromolecules、Soft Matter、Macromolecular Rapid Communications、Polymer Chemistry刊物研究论文15篇,在世界高分子大会MACRO18、太平洋地区高分子大会PPC-15、中国化学会学术年会、全国高分子学术论文报告会等国内外学术会议报告12次,1名研究生获太平洋地区高分子大会Chinese Journal of Polymer Science Best Poster Award。本项目资助培养毕业博士1名、硕士11名,1名博士研究生将于2019年毕业。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
不同改良措施对第四纪红壤酶活性的影响
动物响应亚磁场的生化和分子机制
水溶性共轭高分子有机材料的分子设计、合成及其应用
多组分纳米衣壳状超分子的仿生自组装合成及其应用
功能自组装膜的设计及仿生合成研究
交替亚硅基共轭系统高分子的设计、合成与性质