When introducing ultra-fine strong oxidant ammonium perchlorate (AP) into solid propellants, it can significantly increase the burning rate of the propellants, but it also leads to increased propellant sensitivity and decreased propellant safety. The studies have shown that the use of nano-catalysts and nano-desensitizing agents simultaneously in the propellant containing ultra-fine AP can not only achieve the increase in the burning rate, but also reduce the sensitivity. However, the thermal decomposition mechanism of ultrafine AP under the nano-catalysis and nano-desensitization coupling effects is still uncertain, which cannot provide scientific guidance for increasing propellant burning rate. Therefore, this project is intended to prepare and characterize a variety of ultrafine AP based binary/ternary composites containing nanocatalyst and nano-desensitizing agent by different coupling designs, to define the change law of thermal decomposition characteristics and sensitivities of ultrafine AP under the single effect of nano-catalysis or nano-desensitization and the coupling effects of nano-catalysis and nano-desensitization, to establish a predictable method using multifactor model for the thermal decomposition characteristics and sensitivities of ultrafine AP based ternary composites, to clarify the thermal decomposition mechanism of ultrafine AP under the coupling effects of nano-catalysis and nano-desensitization, which can provide theoretical basis for the change of burning rate of propellant, and it also provide theoretical guidance for the development and design of high-burning rate and low-sensitivity of AP based propellants.
推进剂中引入超细强氧化剂高氯酸铵(AP)后,其燃速可显著提高,但也导致感度增大、安全性降低。研究表明,在含超细AP的推进剂中同时使用纳米催化剂和纳米降感剂,既可实现保持超细AP带来的燃速提高,又可实现降低感度。然而,纳米催化-降感耦合作用下的超细AP热分解机制尚不明确,无法为推进剂燃速提高提供科学指导。本课题通过设计不同耦合方式,构建出多结构纳米催化剂、纳米降感剂和超细AP的二/三元复合材料,明确纳米催化、纳米降感单一因素及双因素耦合作用下超细AP的热分解特性和感度变化规律,建立超细AP三元复合材料热分解特性和感度的多因素模型预测方法,并进一步阐明纳米催化-降感耦合作用下超细AP的热分解机制,为推进剂燃速变化提供理论依据,并为新型高燃速、低感度推进剂的开发设计提供理论指导。
高氯酸铵(AP)是固体推进剂中使用最广泛的氧化剂,且AP的热分解性能与固体推进剂的燃烧性能有着密切的关联,因此可以通过提高AP的热分解性能来提高固体推进剂的燃烧性能和燃速。通过添加纳米燃烧催化剂和降低AP的粒径可以有效的提高AP的热分解性能,但AP的粒径减小会增加其机械感度从而限制了其使用。超细高氯酸铵(超细AP)应用在推进剂中可以显著提高推进剂的燃速,但也会导致感度增加,降低其安全性。在超细AP中加入纳米燃烧催化剂和纳米降感剂可以提高超细AP的热分解性能,提高推进剂的燃速,又可以降低超细AP的感度。然而,纳米催化-降感耦合作用下的超细AP热分解机制尚不明确,无法为推进剂燃速提高提供科学指导。本项目构建了纳米催化剂、纳米降感剂和超细AP的二/三元复合材料,研究了他们的热分解特性和感度特性,对其热分解机理进行了研究。结果表明,采用机械研磨法可以很好地将纳米催化剂、纳米降感剂包覆于超细AP表面。纳米催化剂CuCr2O4可使超细AP高温分解峰温提前78.1 ℃,纳米降感剂TATB可使超细AP的感度降低74.6%。当纳米催化剂与纳米降感剂耦合使用时,可以同时发挥它们各自对超细AP的高效催化和降感。纳米催化-降感耦合作用下,超细AP的热分解速率大幅提升的同时保持感度显著降低,这为以超细AP为基础或添加超细AP的高燃速低感度推进剂、高能钝感炸药制备及应用提供了理论和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
ZnO暴露晶面和缺陷的调控及其催化高氯酸铵热分解机理研究
力-电-热耦合作用下纳米孔隙多相流可控流动特性研究
过氯酸铵对甲状腺毒作用与剂量-效应关系及其机制的研究
过氯酸铵致肺纤维化作用及相关基因表达的研究