The frontier of nanometer measurement science is faced with three foremost challenges. One is that the contradiction exists between the measurement range and precision, the second one is that the error is hard to trace to the source with the measurement precision improved, and the third one is how to beyond the diffraction limit to improve the measurement resolution. Aiming at the three existing problems, nanometer time grating displacement sensing theory and method are proposed based on time space transformation of measurement standard. By using orthogonal alternating electrical fields to establish a unconventional high stable movement as the reference system, we build the relationship between sptial displacement and the time reference. Then displacement measurement with nanometer accuracy will be achieved by comparison in the time domain. This project will innovate the generation mechanism of sensor signals. And a novel method to obtain the electric traveling wave signals based on dual-sine shape grating-plane is proposed. Inertial filter effect, error averaging effect and all filed signal receiving technique based on grating-plane sensing is used to break through the restriction of manufacturing technology for large range measurement. The objectives of this project are to establish a systemic measurement theory of nanometer time grating displacement sensing and form a novel ultra-precision measurement method and core technology system based on time space transformation of measurement standard. Two kinds of sensor prototype will be developed reaching the international advanced level. The measurement accuracy of nanometer linear time grating sensor will reach ±100nm with 50pm resolution within the range of 400mm. And the measurement accuracy of nanometer circular time grating sensor will reach ±0.4″ with 0.05″ resolution within any 360 ° range.
针对纳米测量科学前沿面临的测量范围与精度的矛盾、精度提高导致的误差溯源、克服衍射极限改善分辨力等三个基础性共性问题,在前期时栅研究基础上,本项目提出研究基于测量基准时空变换的纳米时栅位移传感新理论和新方法。拟创新运动参考系的实现方式,提出利用正交变化的电场构建一种非传统意义上的高稳定运动来建立空间位移和时间基准之间的关系,通过时间域的比较来实现纳米精度测量;创新传感信号产生机理,提出基于双正弦形“栅面”传感的电行波生成新方法,利用“栅面”传感的惯性滤波效应和误差均化效应以及全场信号接收技术突破制造技术对大量程的制约。通过研究以建立一套完整的纳米时栅测量理论体系,形成基于测量基准时空变换的超精密测量新方法和核心技术体系。拟研制出两种国际领先水平的传感器样机,纳米直线时栅在400mm量程内精度为±100nm,分辨力50pm;圆时栅在任意360°量程内精度为±0.4″,分辨力0.05″。
本项目针对纳米测量科学前沿面临的测量范围与精度的矛盾、精度提高导致的误差溯源、克服衍射极限改善分辨力这三个基础性共性问题,开展纳米时栅研究,彻底改变“通过制造一把超精密的尺子作为空间基准,利用空间上的位置比较来实现位移测量”的传统思路,提出“通过构建一种高匀速的运动作为时间基准,利用时间上的时刻比较来实现位移测量”,通过“以时间测量空间”来提高位移测量精度。主要研究内容包括纳米时栅传感测量理论及方法、纳米时栅传感器精度标定与误差溯源、大量程纳米时栅传感器跨尺度制造与精度调控。本项目提出了原创性的纳米时栅测量学术思想,建立了一套比较系统的纳米时栅测量理论体系,发明了基于离散栅面空间正弦调制的绝对式纳米时栅位移传感新方法,阐明了纳米时栅测量精度与制造误差之间的关系,揭示了纳米时栅的误差传递规律,提出了消除纳米时栅周期性谐波误差的正弦形栅面阵列传感方法和参数设计准则,解决了传感结构优化、器件制造和信号处理智能化等关键技术问题,取得了核心性能指标的重大突破。经我国最高法定计量机构——中国计量科学研究院检定,纳米直线时栅在400mm量程内,精度为±96nm,分辨力1nm,性能指标总体上达到了国际领先水平;纳米圆时栅在任意360量程内,精度为±0.09",分辨力0.01",性能指标全面达到国际领先水平。采用一条完全不同于国内外已有技术发展的新思路同时实现了“大量程、纳米精度、高分辨力”,从而为突破纳米测量领域面临的三个基础性共性问题的制约提出了一条新途径。研究成果作价进行了成功转化,实现了纳米时栅传感器的产品化,在高档数控机床、精密计量仪器、新型武器系统上取得了批量应用,突破了高端装备领域的一项“卡脖子”关键核心技术,实实在在地解决了国家重大需求。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
气载放射性碘采样测量方法研究进展
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
采用深度学习的铣刀磨损状态预测模型
时栅阵列传感位移测量方法研究
大量程高速光栅纳米测量传感机理及关键技术研究
基于变耦合系数变压器原理的时栅传感器研究
超宽量程CMOS MEMS气压传感器基础研究