High Curie temperature ferromagnetism in spintronics device has been the focus of recent research in the field of spintronics regarding the great potential for applications in high density non-volatile memory device, Spin-LED, Spin-FET, Optical Isolator, spin quantum computer, etc. TiO2 as a potential spintronics device is a versatile material that has attracted considerable interest in the research community due to its wide direct band gap and high-performance electronic properties. Among the studies of spintronics device, however, the discovery and understanding of such materials is proving to be a grand challenge in manipulating capability by coupling magnetic spins and free carriers in single matter at room temperature. The magnetic origin of different TiO2 systems is quite controversial nowadays, and a fundamental understanding of room temperature ferromagnetism in TiO2, therefore, is still one of the important subjects for the increased utility of TiO2 as a spintronics device material. In this study, based on the observation of d0 RTFM in undoped single-crystal TiO2 in our previous work, the D-D neutrons are going to be employed for the purpose of introducing much cleaner additional defects in TiO2 to investigate the irradiation effect on microstructure, optical properties, and the origin of magnetism both in experimental and theoretical aspects. Our group will endeavor to give a reasonable explanation of theoretical understanding of physical mechanisms underlying d0 magnetism in undoped TiO2 for the utilization of spintronics device in practical integrated devices.
自旋电子学器件在高密度存储器、自旋发光二极管、自旋极化场效应管、光隔离器、量子计算机等领域具有广阔的应用前景。然而由于受到对材料磁性来源认识不明的限制,自旋电子学器件的研究进展较为缓慢。宽禁带半导体材料TiO2因具有突出的电学与光学性质,在未掺杂状态下又会表现出d0磁性,是一种开发潜力巨大的新型半导体材料。目前对d0磁性的认识尚存在争议,开展对TiO2室温铁磁性的研究对揭示d0磁性规律,探索d0磁性的来源具有重要意义。在充分分析国内外技术路线并结合本小组前期工作的基础上,我们小组拟采用氘氘中子辐照单晶TiO2产生缺陷的方式,探索缺陷对单晶TiO2微结构、光学、电学及磁学性能的影响,希望澄清非掺杂状态下TiO2样品d0磁性起源机制这一国际前沿问题,为TiO2材料在自旋电子学器件的研发奠定工作基础。
TiO2是一种新型的第三代宽禁带半导体材料,目前对TiO2等稀磁半导体材料室温铁磁性的来源认识尚存在争议。因此系统地开展TiO2室温铁磁性的研究,对阐明稀磁半导体的磁性来源,揭示室温铁磁性的产生机制有重要意义。本项目通过D-D中子及γ射线辐照单晶TiO2和ZnO,研究本征缺陷对样品微结构和磁光性能的影响。.理论上,课题组采用第一性原理方法研究不同本征缺陷对TiO2磁光特性及微结构的影响。当TiO2体系包含氧空位(VO)和钛间隙(Tii)时,缺陷周围O 2p与Ti 3d轨道杂化引起体系自旋极化,钛空位(VTi)在体系态密度价带顶形成不对称空态。包含VO、Tii、VTi缺陷晶胞的基态均倾向于铁磁耦合,居里温度高于室温。为对比研究TiO2,课题组计算了本征缺陷对ZnO磁光性能及微结构的影响,结果表明,锌空位(VZn)、3个氧空位团(3VO)以及锌氧双空位(VZnO)缺陷会引入磁矩,其余本征缺陷很难引入磁矩。此外,利用蒙特卡罗方法计算了引起Ti原子离位形成缺陷所需的γ射线能量至少为2.4MeV,O原子所需的能量至少为1.1MeV。.实验上,小组通过D-D中子及γ射线辐照单晶金红石TiO2和ZnO的方法,分别研究不同本征缺陷对单晶TiO2和ZnO磁光特性的影响。用D-D中子辐照TiO2调节缺陷的浓度和类型,辐照后,VO、VTi浓度增加导致饱和磁化强度(Ms)增大;随着中子辐照注量的增加,样品中的缺陷类型发生变化,Ms随之变化。D-D中子辐照TiO2的室温铁磁性是由VO、VTi和F+引起的。此外,结合前述理论计算O原子离位所需的γ射线能量结果,通过60Co源辐照单晶TiO2,单独研究VO对TiO2结构和磁光性能的影响,结果表明,VO可以在TiO2中引入室温铁磁性,其Ms存在最大值。为对比研究,采用D-D中子辐照单晶ZnO,辐照后Ms发生变化,结合理论计算结果,室温铁磁性由VZn引起。本项目的研究为TiO2基稀磁半导体材料的磁性来源奠定了一定的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
面向工件表面缺陷的无监督域适应方法
高温合金线性摩擦焊接头疲劳裂纹扩展有限元分析
Preparation of Superhydrophobic and Superoleophilic Corn Straw Fibers Oil Absorbents and Application to the Removal of Spilled Oil from Water
高度近视黄斑裂孔内界膜的超微结构及生物力学性能研究
应用氘-氘强流中子发生器开展氩-氩定年
氦氘协同辐照对金属铍微观结构和辐照硬化的影响
极向激光辐照氘氚冷冻靶均匀压缩研究
钨的低能氘/氦辐照效应的差异及其机理研究