Producing Hydrogen from the catalytic reforming of bio-ethanol and then forcing fuel cell vehicle has recently attracted increasing attention, as a promising way to replace fossil fuels with clean sustainable energy sources. However, the hydrogen produced from ethanol reforming is still difficult to be used as hydrogen source of fuel cell vehicle directly, and several problems exist such as the hydrogen producing condition is different with its using condition and the CO concentration is much higher than the electrode can be tolerant. In this project, high effective Rh catalysts will be prepared, which will produce hydrogen stably at a temperature as low as 200 ℃ and effectively inhibit CO production. It will help to simplify hydrogen purification equipment and suit fuel cell vehicle. Many measurements will be used to characterize the properties of catalysts, especially microstructure and pore-structure, in order to establish the structure-activity relationship and guide the preparation of high effective Rh catalysts. The mechanism of metal-support interaction will be confirmed through characterization of the difference existence form of Rh in different catalysts, and explain the reason for excellent properties of catalysts. In-situ characterizations will be used to reveal the reason of carbon deposition on the surface of Rh catalysts and surface reaction mechanism.
由生物乙醇催化重整制取氢气,驱动燃料电池车,有望成为用清洁可再生能源替代化石燃料的有效途径,近年来受到了越来越多的关注。然而,由乙醇重整制取的氢气还很难直接作为燃料电池车的氢源,存在产氢条件与应用条件不符、产气中电极毒物CO含量较高等问题。本项目拟开发一种高效Rh基催化剂,能够在生物乙醇与空气直接自热重整制氢的反应条件下,在200℃的低温实现稳定产氢,且有效抑制CO的产生,从而简化氢气纯化设备,适应燃料电池车的应用。采用多种方法对催化剂性质特别是形貌、孔结构等进行表征,建立构效关系,并指导高效催化剂的制备。通过表征Rh在不同催化剂中存在形式的差异,揭示金属-载体间的相互作用机制,并解释催化剂具有良好性能的原因。通过原位表征,揭示Rh基催化剂表面积碳产生的原因和表面反应机理。
以生物乙醇为原料制取氢气,用纯化后的氢气驱动燃料电池汽车,有望成为用清洁可再生能源替代化石燃料的有效途径。但目前的生物乙醇催化重整制氢技术尚未能满足燃料电池的氢源要求,存在实验模拟的反应条件脱离应用实际、电极毒物CO含量较高等问题。本项目开发了一种高效乙醇制氢Rh基催化剂,在生物乙醇与空气直接自热重整制氢反应条件下,能够在200℃的低温实现稳定产氢,且有效CO产生,进而简化氢气纯化设备。采用多种方法对催化剂性质特别是形貌、孔结构等进行表征,建立构效关系,指导高效催化剂制备。通过对Rh在催化剂中存在形式对催化性能影响的研究,揭示Rh基催化剂表面乙醇制氢反应机理,并解释催化剂具有优异性能的原因。通过对“生物乙醇制氢→氢气纯化→燃料电池车”系统的技术可行性和经济合理性进行分析,为该技术的推广提供数据支持。生物乙醇制氢技术的发展能同时解决当今世界能源和环境两大问题,具有较大的研究意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
肉苁蓉种子质量评价及药材初加工研究
乙醇低温自热重整制氢系统的研究
乙醇水蒸气重整制氢反应Au-Ni合金催化剂的制备及机理研究
生物质乙醇制氢反应的新型高效催化剂研究
生物油催化重整制氢高效催化剂的研究