Photothermal conversion film is the core component of the solar water evaporator. In view of the low intrinsic light-to-heat conversion performance and poor thermal energy utilization efficiency of the existing graphene-based photothermal films, this project is expected to design and fabricate a low-cost and high-efficiency graphene-based composite gel for solar steam generation..(1) Doping the graphene with plasmonic Cu nanoparticles via an in-situ catalytic growth process to form efficient momentum contact between these two materials, achieving synergistic photothermal enhancement, and obtaining low-cost, high-efficiency plasmonic Cu/graphene composite photothermal conversion material..(2) Fabricating the plasmonic Cu/graphene/PVA composite gel based on the frozen casting technique. Optimizing the thermodynamic of the water evaporation process through the regulation and design of biomimetic micro/nano structures of the gels to improve the thermal energy utilization efficiency of the fabricated photothermal films..(3) Constructing empty zones in the PVA gel network by designing hollow-structured light absorber and regulating its hydrophobicity, to reduce the density of the gel and solve the self-floating issue of the PVA gels. Finally, the self-floating, low-cost, and high-efficiency plasmonic Cu/graphene/PVA composite gel for solar steam generation is constructed, which lays a foundation for the fabrication of solar seawater desalination equipment.
光热转换膜是太阳能水蒸发器的关键部件,针对现有石墨烯光热膜本征光热转换性能较差和热能利用效率较低的现状,本项目拟设计并制备一种低成本、高效率的石墨烯复合凝胶光热膜用于太阳能水蒸发:(1)将石墨烯与等离子体金属Cu复合,通过石墨烯在Cu表面的原位催化生长形成有效界面电荷相互作用,实现协同光热增强,获得低成本、高效率等离子体Cu/石墨烯复合光热转换材料;(2)将等离子体Cu/石墨烯与PVA亲水链段高分子材料复合,基于冷冻铸造技术,实现复合凝胶仿生微纳结构的合成与设计,优化水蒸发热动力学性能,提高热能利用效率;(3)进行光热材料的空心结构设计与亲疏水改性,在PVA凝胶网络中构造空区,降低膜层密度,解决PVA凝胶自漂浮性能差的问题,最终获得可自漂浮的低成本、高效率等离子体Cu/石墨烯/PVA复合凝胶光热水蒸发膜,为便携太阳能光热海水淡化设备的制作奠定基础。
项目围绕太阳能界面水蒸发系统中的光热转换机制和热能利用效率问题,选用多种材料体系与器件结构进行了较为系统的研究。首先,针对光热转换机制,项目进行了两个体系的研究:1)构建双相CuxS半导体,证实缺陷半导体与本征半导体间的协同光热增强效应,能显著增加光照过程中的载流子浓度,提高光热性能;2)以生物质花粉为载体构建等离子体Cu/C光热体系,证实非贵金属Cu等离子体对C颗粒的光热性能提升6.6%,并且Cu颗粒表面原位催化生长的石墨烯层有助于稳定Cu颗粒,保持其等离激元特性。针对热能利用效率问题,项目分别从微观热管理和宏观热管理两个角度进行了研究。宏观上,构建3D分离式热局域化结构,提升热能利用效率,并开发淡化、油水分离、抗菌多应用场景;进一步设计单向流体结构实现浓盐水的持续淡化。微观上,先构建三明治蒸发结构,优化水蒸发模式与能量匹配,提高性能;选用PVA凝胶构建水簇蒸发,降低蒸发焓,提高热能利用效率;并且通过光热颗粒的界面富集减少50%的光热材料用量而不影响性能,降低成本。此外,项目还在空气捕水和水伏发电领域进行探索研究,并发表相关成果。.项目取得的成果:发表文章共9篇,Nano Energy(3篇), Small(1篇),Journal of Materials Chemistry A(1篇),ACS Applied Materials & Interfaces(1篇),Advanced Composites and Hybrid Materials(1篇),Mater Today Sustainability(1篇),Energy Technology(1篇);申请发明专利5项;培养研究生6名,其中4名毕业,2名在读。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
碳基光热膜的功能化分层设计及促进水蒸发性能研究
合金化Cu改善石墨烯润湿性及其复合材料性能研究
柔性阶层多孔石墨烯复合膜的制备及电容性能研究
高效锂空气电池用石墨烯/酞菁基MOFs复合空气电极的构建及其性能研究