Frequency synthesizer is a system to realize frequency synthesis. The output signals of different frequencies can be chosen according to the user's instructions. It has been widely used in many fields such as radar, communication and equipment testing. Frequency stability, phase noise and spur suppression ratio are key technical indexes, which directly determine the performance of frequency synthesizer in wireless communication, radar, satellite detection, navigation and other application systems. High performance frequency synthesizer cannot be separated from high pure high stability oscillator, however, at present, most of the oscillator based on electronics (such as dielectric oscillator) and acoustic (such as crystal oscillator) energy storage unit. When these units work at frequencies above GHz, the energy storage performance will drop sharply, and phase noise is bound to be restricted. High-purity and high-stability frequency synthesizer technology based on photoelectric oscillator is a technical problem involving optics, electronics, radio frequency, microwave circuit theory and other disciplines. So far, there is no mature high-performance microwave signal generation technology based on photoelectric oscillator in the world. On the basis of many years of research, this project has extracted four basic problems to be solved. The specific research contents are as follows: to study the noise suppression problem of photoelectric oscillator with the modeling and analysis method of photoelectric oscillator; Large bandwidth fine tuning of low phase noise photoelectric oscillator are studied by injection locking method. The low phase noise spread spectrum of the fundamental frequency signal of the photoelectric oscillator is studied by the method of optical domain frequency multiplication. The problem of high-resolution reference signal with broadband low phase noise is studied by using microwave electrical theory. The microwave frequency synthesizer proposed in this project is based on a photoelectric oscillator, which is used to directly generate high-purity high-frequency (10 GHz) signals. The phase noise performance of the microwave frequency synthesizer is better than that of the current microwave frequency synthesizer at least 25dB. It is hoped that this research can solve two key scientific problems: the generation of ultra-low phase noise signal based on photoelectric oscillator and the design of high purity and high stability frequency synthesizer based on microwave link. Break through the performance limitation of frequency synthesizer based on crystal oscillator, and meet the higher requirements of future high-performance electronic systems on frequency synthesizer in terms of frequency stability, phase noise, spur suppression and so on.
频率综合器是实现频率合成的系统,能根据用户指令选择不同频率的信号输出,已经广泛应用于雷达、通信、设备测试等诸多领域。频率稳定度、相位噪声、杂散抑制比是频率综合器的关键技术指标,直接决定着频率综合器在无线通信、雷达、卫星探测、导航等应用系统中的性能。高性能的频率综合器离不开高纯高稳定度的振荡器作为标准频率源,然而当前,振荡器大多基于电子学(如电介质振荡器)和声学(如晶体振荡器)储能单元。这些单元在GHz以上频率工作时,储能性能会急剧下降,相位噪声必然会受到制约,这样也严重制约频率综合器的低相位噪声性能。基于光电振荡器的高纯高稳定频率综合器技术是一项涉及光学,电子学,射频、微波电路理论等多个学科的技术难题,到目前为止,世界上还没有成熟的基于光电振荡器的高性能微波信号发生技术。本项目在多年研究基础上提炼出四个亟待解决的基础问题开展研究工作,具体研究内容如下:以光电振荡器建模分析方法研究光电振荡器噪声抑制问题;以注入锁定的方法研究低相位噪声光电振荡器大带宽高精细度调谐及其控制问题;以光域倍频的方法研究光电振荡器基频信号低相噪扩频问题;以微波电路理论研究宽带低相位噪声高分辨力参考信号发生问题。本项目提出的基于光电振荡器的微波频率综合器,是利用光电振荡器直接产生高纯高频(10 GHz)信号。将以上信号作为标准频率源,通过特殊设计的微波链路构成微波频率综合器,其相位噪声性能将明显优于目前微波频率综合器至少25dB。希望籍此研究能够解决基于光电振荡器的高纯信号发生和基于微波链路的高纯高稳定频率综合器设计两大关键科学问题。突破基于晶体振荡器的频率综合器性能局限,满足未来高性能电子系统对频率综合器在频率稳定度、相位噪声、杂散抑制等方面更高要求。
频率综合器是实现频率合成的系统,能根据用户指令选择不同频率的信号的输出,已经广泛应用于雷达、通信、设备测试等诸多领域。频率稳定度、相位噪声、杂散抑制比是频率综合器的关键技术指标,直接决定着频率综合器在无线通信、雷达、卫星探测、导航等应用系统中的性能。高性能的频率综合器离不开高纯高稳定度的振荡器作为标准频率源,然而当前,振荡器大多基于电子学(如电介质振荡器)和声学(如晶体振荡器)储能单元。这些单元在GHz以上频率工作时,储能性能会急剧下降,相位噪声必然会受到制约,这样也严重制约频率综合器的低相位噪声性能。基于光电振荡器的高纯高稳定频率综合器技术是一项涉及光学,电子学,射频、微波电路理论等多个学科的技术难题,到目前为止,世界上还没有成熟的基于光电振荡器的高性能微波信号发生技术。本项目在多年研究基础上提炼出四个亟待解决的基础问题开展研究工作,具体研究内容如下:以光电振荡器建模分析方法研究光电振荡器噪声抑制问题;以注入锁定的方法研究低相位噪声光电振荡器大带宽高精细度调谐及其控制问题;以光域倍频的方法研究光电振荡器基频信号低相噪扩频问题;以微波电路理论研究宽带低相位噪声高分辨力参考信号发生问题。本项目提出的基于光电振荡器的微波频率综合器,是利用光电振荡器直接产生高纯高频(10 GHz)信号。将以上信号作为标准频率源,通过特殊设计的微波链路构成微波频率综合器,其相位噪声性能将明显优于目前的微波频率综合器至少25dB。希望籍此研究能够解决基于光电振荡器的高纯信号发生和基于微波链路的高纯高稳定频率综合器设计两大关键科学问题。突破基于晶体振荡器的频率综合器性能局限,满足未来高性能电子系统对频率源在频率稳定度、相位噪声、杂散抑制等方面更高要求。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
原发性干燥综合征的靶向治疗药物研究进展
适用于带中段并联电抗器的电缆线路的参数识别纵联保护新原理
面向高稳定可调光电振荡器的频率漂移补偿技术研究
硅基高Q值微谐振腔光电振荡器的基础研究
高稳定、低相噪微波布拉格振荡器
基于高稳定可调谐测尺的相位式激光测距方法与相关技术基础研究