Currently, all nondestructive detection techniques are not available to quantize the micro-cracks in the remanufacturing cores. Hence, the quantization of micro-cracks by nondestructive detection techniques has been the critical issue to assess the residual life and evaluate the remanufacturability of the remanufacturing cores. In this project, we will study on the quantization of micro-cracks by means of multi-parameter fusion. We also explore the mapping relation of the micro-cracks and multi-parameter. Then to accomplish the data processing, the cooperation mechanism of multi-parameters and extraction method of characteristic information will be researched. Furthermore, we will propose the algorithm of multi-parameter fusion and the modeling of multi-parameter fusion. And then we will discuss principle, method and optimal allocation of multi-sensor cooperation, and reveal the mechanism of fault tolerance and robustness of the system. Finally we can accomplish the quantitative characterization of micro-cracks. As a consequence, it will contribute to enhance the accuracy of residual life assessment of the remanufacturing cores and tell the damage tolerance. Also an innovative method of quantitative analysis and detection based on multi-parameter fusion is provided, which has important significance and application prospect to promote the quality and reliability of the remanufacturing parts.
目前,再制造毛坯微裂纹的无损定量检测还缺乏有效手段。因此,微裂纹的定量无损检测成为再制造毛坯剩余寿命评估,评判其是否可以再制造的关键难题。本项目将应用多参量融合方法对再制造毛坯微裂纹量化问题展开研究。探索再制造毛坯微裂纹与多物理参量间的映射规律;研究微裂纹多参量协同机制及特征信息提取方法,提出微裂纹多参量融合算法,建立多参量融合模型;研究微裂纹多传感器协同原理、协同方法和优化配置,揭示系统的容错性和鲁棒性改善机制,实现微裂纹量化表征。本项目研究将有助于提高再制造毛坯剩余寿命评估的准确度,确定毛坯可再制造的损伤容限,并提供一种多参量协同融合的量化分析与检测方法,对于提升再制造零部件质量及可靠性具有重要研究意义和应用前景。
机械装备再制造技术作为一项绿色高效的新型技术,在工业上有着非常广阔的应用前景。再制造技术应用的关键在于对毛坯的可再制造性评估,为保证结果的可靠性,要求检测技术能够有效地识别疲劳、蠕变、磨损、腐蚀、热损伤等性能恶化的表现,传统单一的检测手段由于其自身检测原理的限制,仅能检测出某一类或某一区域内的缺陷,已无法满足全面检测的要求。.课题系统地分析了金属磁记忆,涡流与超声波的裂纹检测机理,对多参量信息的相关性与互补性进行研究,成功搭建三种传感器集成的多参量裂纹检测系统,实现检测过程的自动化,具有高效性和稳定性。针对获取的信号波形进行相应的特征提取,并构建裂纹定量信息的识别参量。对检测重叠区域提出融合办法并构建融合模型,实现传感器之间的协同作用,实现对裂纹的准确定位以及裂纹深度的检测。.本课题为裂纹定量检测方法提供一种新思路,新办法,有助于提高再制造毛坯剩余寿命评估的准确度,对于提升再制造零部件质量及可靠性具有重要研究意义和应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
基于全模式全聚焦方法的裂纹超声成像定量检测
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于图卷积网络的归纳式微博谣言检测新方法
多空间交互协同过滤推荐
基于超声盐浴的再制造毛坯复合清洗机理与应用
面向再制造毛坯污物的湿喷丸绿色清洗机理研究
再制造涂覆层下基体疲劳裂纹的红外热波辨识及表征
基于热-磁特征融合的再制造构件疲劳微损伤评估研究