In order to adapt to the environment, plants have evolved a disease resistance mechanism to resist various pathogens. The resistance genes (R genes) play an important role in the specific identification of pathogens and then initiates a series of downstream defense responses. The expression of R genes are controled by some specific miRNAs. It has been showed that the levels of some small RNA (including miRNAs and siRNAs) in the plants were affected after pathogens attack. however, the molecular mechanism of R gene regulating miRNA pathway remains obscure. In this project, it was found that the negative control factor CPR1 mutation in plant disease resistance pathway resulted in a large elavation of its downstream resistance gene SNC1. Northern blot analysis showwd that miRNA biosynthesis in the mutant was significantly inhibited. Besides, we will use genetic methods such as gene overexpression and immunoprecipitation to find the factors that affect the synthesis of miRNA with SNC1, and to analyze the specific mechanism and regulation network. The study will extend our knowledge in the mechanism of plant R genes regulate miRNA biosynthesis, and accomplishment of this project will provide theoretical basis and novel strategies for the crops to resist the pathogens in environment and improve their survival rate.
为了适应生长环境,植物进化出一套抵御各类病原体的抗病机制。抗病基因(R基因)对于植物特异识别病原体继而启动下游一系列防御反应具有重要作用,它们的表达受到一些特异miRNA的靶向调控。研究表明,植物遭受病原菌的侵染后其内源的部分小RNA(包括miRNA和siRNA)含量发生变化,但R基因是否调控以及如何调控miRNA合成仍亟待研究。本项目通过遗传筛选,发现植物抗病通路负调节因子CPR1突变后导致其下游抗病基因SNC1大量表达。通过Northern blot结果表明该突变体中miRNA的生物合成受到明显抑制。本项目将利用基因过表达和免疫共沉淀等分子与遗传学手段,寻找与SNC1互作影响miRNA合成的因子,并对其具体作用机制与调控网络进行深入分析。本研究有助于理解和阐释植物抗病基因调控miRNA生物合成的分子机制,为作物更好的抵御环境病原菌侵害并提高存活率提供理论基础和新途径。
植物进化出一系列抗病基因(R基因)来抵御病原体侵染。根据结构域组成,R基因被分为至少五类。其中,含有核苷酸结合位点(NBS)和C末端富含亮氨酸的重复结构域(LRR)的NBS-LRR基因家族是最大的一类。R基因的组成型表达对植物生长是有害的,因此其表达受到严格调控。在没有病原体侵染的情况下,一些NBS-LRR基因被某些microRNA(miRNA)沉默,并会产生phased siRNA(phasiRNA),进一步扩大其他NBS-LRR基因沉默,形成全面抑制R基因表达的级联调控网络。然而在防御期间,植物如何诱导和维持R基因表达以及R基因是否影响小RNA的生物合成尚不清楚。在本研究中,我们通过正向遗传学筛选分离到一个miRNA和phasiRNA生物合成中具有全局缺陷的拟南芥突变体cpr1 aba1,并将原因追溯到R蛋白SNC1的过度积累和细胞核定位。位于细胞核内的SNC1可能通过与转录共抑制因子TPR1相互作用抑制编码miRNA和phasiRNA基因的转录。更重要的是,SNC1在细胞核内高积累减少了来自3个phasi-NBS-LRR基因产生的phasiRNA的丰度,同时拟南芥170 个R基因中的大部分表达发生上调。综上所述,本研究揭示了一个R基因-miRNA-phasiRNA的级联调控机制,其用于放大植物的免疫应答。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
低轨卫星通信信道分配策略
A Prehepatectomy Circulating Exosomal microRNA Signature Predicts the Prognosis and Adjuvant Chemotherapeutic Benefits in Colorectal Liver Metastasis
卫生系统韧性研究概况及其展望
MicroRNAs in Transforming Growth Factor-Beta Signaling Pathway Associated With Fibrosis Involving Different Systems of the Human Body
miRNASNPs调控鸡miRNA生物合成及功能的机制
蛋白磷酸酶4调控植物miRNA合成的分子机制
植物C27基因参与植物抗病的分子机制
植物赤霉素生物合成代谢的调控机制