As an important key technology, signal-parameter identification has been widely applied in many realms, such as cognitive radio, eavesdropping, countermeasure and civilian security-monitoring. With the deployment of multi-antenna terminals in wireless distributed networks (WDN), the eavesdropper will receive MIMO overlapped signals from multiple nodes. Consequently, antenna-grouping ambiguity arises and leads to a new challenge in signal parameter identification for WDNs. .In this work, by investigating the overlapped mechanism of multi-source MIMO signals, we implement an information fusion of the network behavior and node-signal characteristic. Further, a novel multi-dimension parameter sensing and behavior learning based approach to identify the multi-source overlapped MIMO signals is proposed. The following three major problems are well investigated in this work. 1) State-variation sensing for multi-user asynchronous signals in WDNs. 2) Multi-dimension characteristics integrated-extraction of virtual MIMO signals with low detectable probability. 3) Screening and classification of combinational behavior constructed from the network behavior and signal characteristics..By eliminating the overlap among multi-source MIMO signals, the identification performance of the eavesdropper will be improved to a large extent. The outcome is applicable to many engineering realms, as well as establishes a theoretical basis for the intelligent receiver design in cognitive radios, direction-finding and positioning of radiation source, and capture of the information dominance.
无线分布式网络的信号参数识别是认知无线电、侦听对抗、民用安防等领域的关键技术。随着越来越多的多天线终端设备出现在无线分布式网络中,识别设备会收到自多个节点的MIMO混叠信号,导致“天线分组模糊度”的出现,给无线分布式网络信号参数识别带来新的挑战。.课题在分析多源MIMO信号混叠机理的基础上,对网络行为与节点信号特征进行有效的信息融合,提出了基于多维参数感知与行为学习的多源MIMO混叠信号识别新方法。具体研究包括:1)无线分布式网络多用户异步信号状态变化感知方法;2)低可检测环境下虚拟MIMO信号多维特征联合提取方法;3)网络行为与节点信号特征的组合行为筛选与分类。.通过有效解决多源MIMO信号混叠问题,可大幅提升网络侦听节点的识别能力。课题成果为认知无线电中的智能接收机设计、侦听对抗中提高辐射源测向定位能力、获取制信息权等应用提供重要的理论支撑。
无线分布式网络的信号参数识别是认知无线电、侦听对抗、民用安防等领域的关键技术。随着越来越多的多天线终端设备出现在无线分布式网络中,识别设备会收到自多个节点的MIMO混叠信号,导致“天线分组模糊度”的出现,给无线分布式网络信号参数识别带来新的挑战。课题在分析多源MIMO信号混叠机理的基础上,对网络行为与节点信号特征进行有效的信息融合,提出了基于多维参数感知与行为学习的多源MIMO混叠信号识别新方法。具体研究包括:.1)无线分布式网络多用户异步信号状态变化感知方法;2)低可检测环境下虚拟MIMO信号多维特征联合提取方法;3)网络行为与节点信号特征的组合行为筛选与分类。. 通过有效解决多源MIMO信号混叠问题,可大幅提升网络侦听节点的识别能力。课题成果为认知无线电中的智能接收机设计、侦听对抗中提高辐射源测向定位能力、获取制信息权等应用提供重要的理论支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
基于多模态信息特征融合的犯罪预测算法研究
多源多维感知数据向量化表达与分布式认知学习方法研究
基于无线传感网络的早期火灾信息分布式压缩感知识别
面向无线视频组播的分布式编码与随机混叠调制
无线感知网络分布式协同学习稀疏核学习机的理论和算法研究