Currently, the investigation of semiconductor quantum dots (QDs) with polymer "bottom-up" assembly is still one of the hot topics in the field of materials-oriented chemical engineering due to the urgent requirement in the development of new materials with integrated, regulatable, and enhanced functions. However, the challenge still remains to overcome the phase-separation between semiconductor QDs and polymers, as well as the functional failure of QDs in the assembly process. Considering the surface properties of QDs and molecular structures of polymers, this project aims at the fabrication of functional polymer-QDs nanocomposites with ordered and controllable properties via liquid-liquid phase-interface-driven assembly method. Initially, the block copolymers with controllable molecular structures and unqiue properties will be designed and synthesized via the combination of catalytic chain transfer polymerization and click chemistry. After that, the as-prepared block copolymers will be as building host to precisely assemble with QDs at the confined liquid-liquid interface. The motion law, energy transfer and chemical reaction between QDs and block copolymers will significantly influence the performance of the target assembly objects, and these factor will be seriously investigated under the microscopic interface assembly process by divese analytic techniques. Meanwhile, by studying the intrinsic relations between the components, microscopic structures and macroscopic performance of these nanocomposites, we will deeply understand the effects of the structures, morphology of the nanocomposites on their physical and chemical properties. In addition, we will explore the interfacial assembly laws of the block copolymers and QDs under restrictive conditions with external fields. These studies will allow us to integrate structures and functions of the nanocomposites together to achieve their application in photoelectrical and anti-counterfeiting code fields.
当前,以半导体量子点与聚合物“自下而上”的组装,实现其功能的集成、调制和性能强化依然是材料化学工程领域的热点之一。如何克服荧光量子点在聚合物中的相分离和功能失效是关键。本项目以构筑结构有序、性能可调的聚合物基量子点复合材料为目的,从量子点的表面化学特性以及嵌段共聚物的分子结构设计出发,实现聚合物和荧光量子点的在相界面驱动下的有序可控集成。首先,采用催化链转移聚合和点击化学制备结构、分子量以及性能可控的嵌段共聚物,并以此为主体与量子点在液液界面限域条件下达到精密组装。重点研究嵌段共聚物与量子点在微观界面组装过程中的运动规律、能量传递、化学反应对目标材料功能的影响。同时,通过深入研究量子点与嵌段共聚物的结构和形态对有序复合材料的物理和化学性能的影响,考察有序复合材料的组成和微观结构与宏观性能之间的内在联系,最终掌握聚合物基量子点复合材料的结构功能一体化,实现其在光电器件和防伪编码领域的新应用。
本研究利用相界面驱动等组装手段,以组装体性能为导向,采取逆向而行的剪裁与分子设计思路,通过对无机纳米粒子与大分子构筑单元的功能化设计,以实现其在复合组装体有序结构的调控与高效组装为目标,探索无机纳米粒子及其组装体在组装过程中功能演变规律及科学内涵,深入理解与组装体材料结构与性能之间的构效关系,形成构筑单元、组装体集成优化的新方法与新技术。在大分子构筑单元功能化设计方面,采用催化链转移聚合、点击化学原理,在分子水平上实现其结构的设计和施工,研究反应过程中分子构件的形成及对组装规律的影响。其次,通过组装实现无机纳米粒子与功能聚合物的“精密复合”,得到预期的结构和形态,并获得高性能的有序聚合物基纳米晶组装体材料。最终,对这些组装体材料的合成、结构形成机理、结构与性能关系、电子传输等光电参数进行系统研究,解决无机纳米与聚合物之间极易产生的相分离及功能失效的问题,开发无机-有机杂化功能材料的先进制备技术,并实现聚合物基纳米晶组装体在显示、编码和光催化等领域的应用,为真正实现复合组装体集成与功能化奠定理论与方法基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
铁酸锌的制备及光催化作用研究现状
量子点的有序组装及其两相界面调控用于提高QLED稳定性的研究
界面的有序分子组装及组装体的功能研究
双色量子点“内标”式自组装荧光传感膜的构筑及其界面识别
磁热法高效量子点的合成及其与聚合物界面组装调控研究