As the key component of wind power generation system, wind turbines operate in those harsh environments during its long-term lifetime. Due to lack of efficient diagnosis approaches, many common faults could not be detected and altered in advanced, thus results in long downtime and huge economic lost. By analyzing those common fault propagation mechanisms of wind turbine, the research of project extracts fault features of wind turbine from several data source based on multi-dimension of time and space. A minimum set of fault features describing common wind turbine faults, as well as a fault analysis module describing the overall characteristics of wind turbine, is then researched and established. It is resolved the dynamic characteristics of faults of wind turbine, and analyzed how much the fault features will be affected by mechanical and electrical combined factors under different operation modes of wind turbine. Data mining technology is adopted to conduct data fusion based on D-S evidence theory, and to fully describe one typical fault by the fault feature with minimum dimension, thus a total solution for wind turbine status identification, fault forecasting and fault elimination is then established. This project aims to establish a theoretical mechanism for resolving and analyzing wind turbine status monitoring and fault diagnosis, in order to provide theoretical support and analysis approach for the research, design and operation of wind turbine status monitoring and fault diagnosis.
风力发电机组是风力发电系统的关键设备,长期运行在恶略的工作环境下,由于缺乏有效的故障诊断方法,多种常见故障无法提早预警,导致故障停机时间较长,造成巨大的经济损失。本项目通过分析风力发电机组的常见故障传播机理,从时间和空间多维度出发,从多个数据源中提取风力发电机组的故障特征;研究和建立表征风力发电机组常见故障的故障特征最小集;建立描述风力发电机组整体特性的故障分析模型;分析研究风力发电机组故障过程的动态特性,以及风力发电机组在各种运行模式下机械与电气等部件综合因素对风电机组故障特征量的影响;采用数据挖掘技术进行基于D-S证据理论的数据融合,以最少维数的故障特征量完全表征某一类常见故障,建立风电机组状态识别、故障预测、故障排除的完整解决方案。目标是建立风力发电机组状态监测与故障诊断研究的整体分析理论体系,为风力发电机组的状态监测与故障诊断的研究、设计、运行提供新的理论支持和分析手段。
风电机组所处环境复杂,工况非常恶劣,机组发生故障的概率大,这给大规模风力发电系统的安全可靠运行带来极大挑战。本项目以大型风力发电机组传动链故障为研究对象,研究风力发电机组风轮、传动链和电气部件常见故障的传播机理,确定风电机组故障特征提取方案,建立风力发电机组状态监测与故障诊断研究的分析理论体系;开发了一款振动监测数据采集器,通过光纤通讯方式上传至云服务台,在云服务台实现基于上传的实时数据进行风机故障在线诊断的功能;开发出一套具有商业应用前景和具备市场竞争力的风电机组状态监测系统。本项目研究无论在学术层面还是在工程层面都是一个前沿的、有价值的课题,对提高我国风电系统的理论研究与现场运行水平,实现风电技术自主化具有重大意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于多模态信息特征融合的犯罪预测算法研究
基于分形维数和支持向量机的串联电弧故障诊断方法
基于FTA-BN模型的页岩气井口装置失效概率分析
资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据
基于海量数据代价敏感学习的直驱风电机组故障诊断方法研究
基于多源数据融合的风电机组健康状态评估及预测方法
基于数据驱动的风电机组传动链故障诊断与性能预测研究
基于多源征兆和并网运行状态的大型风电机组早期故障诊断研究