Cerebral ischemia injury induces neuron degeneration and endogenous neurogenesis. Unfortunately, the limited new-born neurons do not survive well after stroke. In order to have more survival neurons, it is very important to understand the detail mechanisms of post-stroke endogenous neurogenesis. SIRT1 is an important histone deacetylase, which regulates acetylation of the histone/non-histone transcriptional factors, and affects cellular senescence and cell proliferation. Our pilot data show that cerebral ischemia-reperfusion induces transient SIRT1 translocation from nucleus to cytoplasm, which subsequently mediates the acetylation and translocation of beta-catenin. Hence, we hypothesize that SIRT1 plays an important role in post-stroke endogenous neurogenesis via regulating beta-catenin signaling. In this project, we will adopt the methodology of biochemistry, molecular biology, histology and so on, to address the following aspects in the molecular, cellular and individual level: (1) The roles of SIRT1→β-catenin→C-Myc signaling pathway in neuronal differentiation under physiological conditions, (2) The role of SIRT1→β-catenin→C-Myc signaling pathway in promoting neurogenesis under OGD/ischemia and reperfusion injury in vivo and in vitro. By investigating these three parts, we will reveal the role of SIRT1→β-catenin→C-Myc signaling pathway in neural stem cells activation. Eventually, this research will provide potential molecular targets for drug discovery in promoting post-stroke neurogenesis.
缺血性脑损伤造成神经元退变的同时也促进神经再生,但内源性NSCs数量少、存活时间短。因此,积极探索激活内源性神经再生具有重要意义。SIRT1是重要的去乙酰化酶,协同Wnt信号通路调节细胞的衰老、增殖等。预实验结果证明,脑缺血/再灌注损伤(I/R)后,SIRT1有短暂的出核并调节β-catenin乙酰化、核转位的功能,以往的研究已证明I/R后β-catenin入核具有神经元保护作用。因此,我们推测SIRT1可能因调节β-catenin乙酰化活性、影响其入核进而促进神经再生。本课题拟揭示:(1)生理条件下SIRT1→β-catenin→C-Myc信号通路对神经发生的调节作用;(2)I/R后,SIRT1介导β-catenin核转位激活该通路对神经再生的调控机制。该研究最终阐明SIRT1→β-catenin→C-Myc信号通路对激活中风后内源性NSCs的作用,为治疗脑中风提供新思路及药物作用靶点。
缺血性脑损伤造成神经元退变的同时也促进神经再生,但内源性NSCs数量少、存活时间短。因此,积极探索激活内源性神经再生具有重要意义。SIRT1是重要的去乙酰化酶,协同Wnt信号通路调节神经干细胞的增殖及分化等。.研究内容包括:(1)在生理条件下,验证SIRT1/ β-catenin/C-Myc信号通路对神经干细胞自我更新、增殖及分化的调节作用。(2)揭示脑缺血/再灌注后(I/R),SIRT1对β-catenin的去乙酰化的调节作用;(3)鉴定脑缺血/再灌注后,SIRT1对β-catenin从胞浆到胞核转位的调节;(4)探索脑缺血/再灌注后,SIRT1通过介导β-catenin核转位激活SIRT1→β-catenin→C-Myc通路,从而实现对NSCs神经再生的调控作用。.重要结果:(1)生理条件下,我们采用CRISPR/Cas9技术敲除神经干细胞C17.2中SIRT1,神经干细胞增殖降低;使用SIRT1的激活剂白藜芦醇促进增殖,并促进向神经元方向分化。(2)在脑缺血过程中,SIRT1通过降低乙酰化β-catenin的活性,增加β-catenin核转位,从而激活SIRT1→β-catenin→C-Myc通路,实现对NSCs神经再生的分子机制。(3)从苦瓜提取的苦瓜多糖(Momordica Charantia Polysaccharide, MCP , 100 mg/kg)通过增加SIRT1活性,增强β-catenin去乙酰化,增加β-catenin核转位,进一步表明MCP对脑缺血后神经干细胞的增殖及分化的调控作用,MCP调控神经干细胞向神经元方向分化。.本项目的深入研究,阐明一新的激活内源性NSCs的机制:SIRT1通过降低β-catenin的乙酰化活性促进β-catenin的核转位,促进神经干细胞的增殖、分化,有助于发现缺血性药物干预治疗的主要环节和关键靶点。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
坚果破壳取仁与包装生产线控制系统设计
Mechanical vibration mitigates the decrease of bone quantity and bone quality of leptin receptor-deficient db/db mice by promoting bone formation and inhibiting bone resorption.
SRHSC 梁主要设计参数损伤敏感度分析
考虑损伤影响的混凝土层裂试验与数值模拟
lncRNA-HN促进hnRNP-U核转位介导铅暴露影响学习记忆机制的研究
HOP/HSP90 复合物介导转录因子Snail核转位促进胃癌EMT的分子机制
慢性应激激活β2-AR调控β-catenin核转位促肝癌侵袭转移的分子机制研究
转基因神经干细胞促进面神经再生的研究