The electrochemically assisted reduction of carbon dioxide to methane by electromethanogenesis system uses electromethanogenesis as biological catalyst to catalyze proton, electron and carbon dioxide to synthesize methane at low energy input. It is a new technology which can solve both of environmental and energy problems that human faces. However, the mechanism of this process is still unclear. The aim of this project is intended to use M.palustre as a model microorganism to research the mechanism of electrochemically assisted reduction of carbon dioxide to methane by electromethanogenesis. First, the mechanism of direct using proton, electron and carbon dioxide to synthesize methane within M.palustre was revealed via analyzing the production mechanism of reduced ferredoxin (Fdred2-), reduced coenzyme F420 (F420H2), coenzyme M, and coenzyme B, and via analyzing the pathway of proton metabolism and electron transfer within M.palustre in the process of carbon dioxide reduction. Then the mechanism of electron transfer between M.palustre and electrode was demonstrated through analyzing either the existence of nanowire and cytochrome on M.palustre surface or not. After that, we would like to in-depth understand the mechanism of electrochemically assisted reduction of carbon dioxide to methane by electromethanogenesis from two aspects mentioned above. The project explores the mechanism of electrochemically assisted reduction of carbon dioxide to methane by M.palustre, which would pave the way for the research on electrochemically assisted reduction of carbon dioxide to methane by electromethanogenesis. Meanwhile, it would also provide technical support for the research on efficient production of methane by electrochemically assisted reduction of carbon dioxide to methane with electromethanogenesis.
电辅助产甲烷菌还原二氧化碳产甲烷系统以产甲烷菌为生物催化剂,在较低能量输入下催化质子、电子及二氧化碳合成甲烷,是一种兼顾环境与能源问题的新技术,但是这一过程作用机制尚不清楚。本项目拟以M.palustre为模式微生物,通过M.palustre产甲烷时胞内还原态铁氧还原蛋白(Fdred2-)、还原态辅酶F420(F420H2)、辅酶M、辅酶B产生机制及二氧化碳还原过程中胞内质子代谢途径和电子传递途径的研究,揭示M.palustre直接利用质子、电子及二氧化碳合成甲烷的机制,然后通过分析M.palustre表面是否存在纳米导线和细胞色素解析M.palustre与电极间电子传递机制,进而从以上两个方面阐明电辅助M.palustre还原二氧化碳产甲烷机理,为电辅助电活性产甲烷菌产甲烷研究奠定理论基础,同时为电辅助电活性产甲烷菌还原二氧化碳高效产甲烷研究提供技术支持。
在电辅助下,电活性产甲烷菌能直接利用胞外电子和质子将二氧化碳还原为甲烷,该技术是近年来迅速发展的一种兼顾环境与能源问题的新技术。在环境、能源与水资源等问题日益严峻的形势下,这一技术为减少污染物排放、二氧化碳的资源化利用、有机废水资源化处理及缓解能源危机与水资源匮乏提供了新途径。然而,目前对电活性产甲烷菌直接利用胞外电子和质子还原二氧化碳产甲烷的机制缺乏深入研究。本项目以电活性产甲烷菌Methanosarcina barkeri 800为模式微生物开展了电辅助电活性产甲烷菌还原二氧化碳产甲烷机理研究,包括电活性产甲烷菌M. barkeri 800直接接受胞外电子的机制、产甲烷菌胞内还原态铁氧还原蛋白(Fdred)产生机制、产甲烷菌胞内还原态辅酶F420(F420H2)产生机制及产甲烷菌胞内辅酶M(CoM-SH)与辅酶B(CoB-SH)产生机制。结果表明:1)镶嵌在电活性产甲烷菌外膜表面的细胞色素c在直接接受胞外电子中起重要作用;2)胞外电子通过外膜表面的细胞色素c将氧化态的甲基吩嗪还原为还原态的甲基吩嗪,然后异二硫键还原酶(HdrED)利用还原态的甲基吩嗪将辅酶M与辅酶B的异二硫键化合物(CoM-S-S-CoB)还原为CoM-SH与CoB-SH;3)产甲烷菌膜上的辅酶F420氧化酶(Fpo)在质子跨膜势能的作用下利用还原态的甲基吩嗪将氧化态的辅酶F420还原为还原态的辅酶F420(F420H2);4)F420还原酶(Frh)将产生的部分F420H2氧化并产生H2,而Ech-hydrogenase利用产生的H2将氧化态的铁氧还原蛋白(Fdox)还原为还原态铁氧还原蛋白(Fdred)。该研究初步揭示了电活性产甲烷菌M. barkeri 800直接利用胞外电子还原二氧化碳产甲烷的机制,为电辅助电活性产甲烷菌产甲烷的研究奠定理论基础及生物电化学技术高效还原二氧化碳产甲烷的研究提供技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
钢筋混凝土带翼缘剪力墙破坏机理研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
G. metallireducens与M. barkeri DIET方式耦合还原CO2产甲烷机理解析
厌氧耗氢产甲烷混合菌群还原二氧化碳合成甲烷工艺及机理研究
微生物电催化还原二氧化碳产甲烷的机制解析
原位交流电伏安法/光谱技术联用对于铜催化二氧化碳电还原的机理研究
G. metallireducens与M. barkeri DIET方式耦合还原CO2产甲烷机理解析