Gut microbiome function collectively as an extra ‘organ’ for the host, which also can be regarded as the host’s ‘second genome’. Gut microbes are especially important in regulating host’s metabolism, which has been well studied in the mammals. However, the gut microbiome and its metabolic role in fish are rarely studied. Our preliminary study targeting the ‘all-fish’ growth hormone transgenic common carp (the growth rate is faster by 42% than the wild controls) indicates that gut microbiota contributing to the fast growth of transgenic fish. We also found that the transgenic fish displayed increased carbohydrate metabolism compared with the controls. This study intends to further investigate the assembly and turnover of gut microbial community during the development of transgenic common carp by using the newly developed metagenomic methods (i.e., high-throughput sequening and functional gene array). On the basis of systematic comparison and meta-analysis between transgenic fish and wild controls, the major gut microbes that significantly correlate with carbohydrate metabolism in transgenic common carp will be screened. Along with a series of analyses regarding the host’s gene expression, metabolic products detecting, behaviour comparison, phphysiologic and biochemical indexes, the role of gut microbiome on carbohydrate metabolism in the transgenic fish will be studied, and finally construct the carbohydrate metaboliam pathway. The overarching aim of this study is to reveal the regulating mechanism of gut microbiome to the carbohydrate metabolism in transgenic common carp. This study is of importance as it will give novel insights into how gut microbiome regulates metabolism in vertebrate fish, and will also provide scientific basis for improving feed efficiency and finally benefiting the breeding efficiency.
肠道微生物组(gut microbiome)如同宿主的额外器官,又被称为第二基因组,对宿主物质代谢具有重要调节作用。这主要是基于对哺乳动物的研究,而关于鱼类肠道微生物的代谢调控作用还鲜见报道。我们前期探索研究表明,转“全鱼”生长激素基因鲤肠道微生物与其快速生长有关(转基因鲤比对照鲤生长快42%),而且转基因鲤对糖类的代谢能力比对照鲤强。本课题拟在此基础上进一步通过高通量测序和功能基因芯片(GeoChip)来揭示转基因鲤肠道微生物群落构建及演替规律,在与对照鲤进行比较和整合分析的同时筛选出与转基因鲤糖代谢相关的主要微生物类群;进而结合宿主相关基因表达、代谢产物检测、行为比较、生理生化分析等来揭示所筛选微生物在转基因鲤糖代谢中的作用、构建糖代谢通路,并阐明肠道微生物对转基因鲤糖代谢的调控机制。这将为肠道微生物对鱼类代谢的调控研究洞开一片新的视窗,也能为提高鱼类饲料利用率和养殖效益提供科学依据。
肠道微生物组(gut microbiota)如同宿主的额外器官,又被称为第二基因组,对宿主物质代谢具有不可或缺的调节作用。关于人类和哺乳动物肠道微生物组及其代谢功能的研究近些年取得了诸多突破性进展,而关于鱼类这一重要养殖对象肠道微生物的代谢调控机制研究还鲜见报道。我们前期探索研究表明,转“全鱼”生长激素基因鲤肠道微生物与其快速生长有关(转基因鲤比对照鲤生长快42%),而且转基因鲤对糖类的代谢能力比对照鲤强。因此本课题在我们关于鱼类肠道“岛屿”系统微生物群落生态学研究的基础上,对已通过中试的转基因鲤及对照鲤肠道微生物进行了长期研究(从孵化至性成熟)。结果表明,转基因鲤和对照鲤在不同发育阶段会从环境中选择不同的微生物并在其肠道定植,但肠道微生物又与环境微生物明显不同,而且转基因鲤和对照鲤在各发育阶段消化道微生物组成也明显不同。不过当转基因鲤与对照鲤生长速度没有明显差异时,消化道中拟杆菌与厚壁菌比例差异不大,一旦转基因鲤开始表现出明显快速生长时,其厚壁菌种类和数量显著增加。转基因鲤与野生对照鲤的代谢差异与肠道微生物中的厚壁菌、拟杆菌和变形菌的调节有关,其中转基因鲤肠道厚壁菌种类和数量显著增加,从而加速对多糖的代谢实现转基因鲤的快速生长。虽然外源基因表达被认为是导致转基因鲤快速生长的直接原因,但最终的能量来源均离不开肠道微生物参与的代谢调控,该项研究提供了转基因鲤通过肠道微生物参与的代谢作用实现快速生长的最新证据。此外,以另一种杂食性鱼类异育银鲫中科3号为研究对象,采用高通量测序技术追踪其发育过程中消化道微生物演替。研究发现:异育银鲫消化道微生物多样性在出膜后第三天开始随时间呈显著性增加;宿主发育过程中消化道微生物存在3个时间段存在显著不同的群落结构。通过NRI系数对其生态学过程进行表征,发现促使这一演替过程发生的主要是宿主的定向选择性压力,但这种定向选择效应伴随宿主自身的发育逐渐减弱。本研究为肠道微生物对鱼类代谢的调控研究洞开一片新的视窗,也能为提高鱼类饲料利用率和养殖效益提供科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
转录组与代谢联合解析红花槭叶片中青素苷变化机制
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于细粒度词表示的命名实体识别研究
Apelin对鲤肠肝轴糖代谢的调控机制研究
转基因黄河鲤的基因组选育
HBV肝硬化临床进展中肠道微生物组的动态规律及共代谢机制研究
肠道菌群-SIgA稳态在胃袖状切除术改善糖代谢中的作用机制研究