Pipes are widely used in industrial and military equipment, and its vibration and noise have great influence on the service safety, thus the requirement for vibration and noise reduction of pipes is extremely urgent. Under the multi-physics coupling conditions (such as force, acoustic, thermal, electric, magnetic fields), the dynamic behavior of pipe becomes more complicated. It is more difficult to realize the vibration and noise reduction. .The extraordinary physical properties of acoustic metamaterials can manipulate of the propagation acoustic and vibration, which can have a broad application prospect in the field of vibration and noise reduction. .Focusing on the demand of the vibration and noise control, this project introduces the theory of acoustic metamaterials into the design of vibration and noise reduction of pipe taking the condition of multi-physics coupling into consideration. Combining theoretical analysis with numerical simulation and experimental test, an intensive study of the vibroacoustic manipulation of the acoustic metamaterial pipe will be carried out, as well as the optimum design of vibration and noise reduction. .In this project, we are planning to investigate the following aspects:.Research to establish the dynamic model of acoustic metamaterial pipe under the multi-physics coupling conditions, and realize the accurate calculation of acoustic vibration propagation characteristics..Research of the influence of acoustic and vibration propagation characteristics, and reveal the mechanism of manipulation and energy conversion. .Carry out integrated optimization design of low frequency, broadband and small size vibration and noise reduction. .Design and improve the experimental test system to accomplish the experimental verification..The outcome of this project will provide a new technical approach for the design of vibration and noise reduction of the pipes.
管路在工业和军事装备上应用广泛,其振动与噪声对装备服役安全影响较大,减振降噪需求迫切。多场耦合(如力、声、热、电、磁等)使管路动力学行为更加复杂,减振降噪更加困难。声学超材料的超常物理效应可实现声振传播的超常调控,在减振降噪领域具有广阔的应用前景。本项目以管路振动与噪声控制为牵引,考虑多场耦合条件,将声学超材料引入到管路减振降噪设计中,将理论分析、仿真计算和实验测试相结合,深入研究多场耦合的声学超材料管路声振调控与优化设计。项目将建立多场耦合条件下的声学超材料管路动力学模型,实现声振传播特性准确计算;深入分析声学超材料管路声振传播特性影响规律,揭示声振调控与能量转换机理;开展低频、宽带、小尺寸减振降噪集成优化设计;完善实验系统,开展实验测试、验证与评估。项目研究成果最终为管路减振降噪设计提供新的技术途径。
管路在工业和军事装备上应用广泛,其振动与噪声对装备服役安全影响较大,减振降噪需求迫切。管路中存在多种激励载荷耦合、多模式振动耦合、多物理场耦合,低频、宽带、小尺寸减振降噪设计更加困难。声学超材料的超常物理效应可实现声振传播的超常调控,在减振降噪领域具有广阔的应用前景。.本项目聚焦管路振动与噪声控制迫切需求,考虑多场耦合条件,将声学超材料引入到管路减振降噪设计中,将理论分析、仿真计算和实验测试相结合,深入研究多场耦合的声学超材料管路声振调控与优化设计。在计算方法、声振调控机理、低频减振降噪优化设计以及实验验证等方面开展深入研究,取得的主要成果及其结论如下:.1)完善了多场耦合声学超材料管路声振计算方法,为多场耦合的声振调控提供了有效计算工具;.2)深入揭示了多场耦合声学超材料管路声振影响规律与调控机理;.3)充分开展了多场耦合声学超材料管路减振降噪集成优化设计;.4)制备了声学超材料管路样件并完成了实验验证。.项目研究成果为管路减振降噪综合设计提供了新的理论基础和技术支撑。在项目资助下,发表论文15篇,其中SCI检索14篇。相关研究成果参与申报了湖南省自然科学一等奖等省部级奖2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
宽弦高速跨音风扇颤振特性研究
流固耦合声子晶体管路声振特性及减振降噪研究
面向减振降噪及热防护的多功能超材料结构多尺度拓扑优化
基于声透视法优化弹性结构减振降噪的研究
超轻有序多孔结构声振特性及其低频减振降噪研究