Cavity and waveguide quantum electrodynamics (QED) mainly studies the extraordinary and fundamental quantum physics and its applications by exploiting the quantum interaction between light tightly confined in a in a low-dimensional space, namely, a “photon box”, and matters, in particular, quantum emitters. The waveguide QED is the very recent progress of the cavity QED. Both of them are at the heart of modern quantum optics and quantum technology. They provide a powerful toolkit for quantum information processing. The corresponding systems are integrable and flexible. Therefore, the physics behind them are complicate and counterintuitive. This grant proposal aims to reveal the deeply extraordinary physics and diverse behaviors in the cavity and waveguide QED, and to propose unique applications. The main targets of the proposed project include: (i) present models for describing the dynamics of the quantum light-matter interaction in a complex low-dimensional space, and developing analytical and numerical methods for simulating their motion; (ii) theoretically study the open quantum system where a traveling quantum field couples to quantum emitters; propose innovative solutions for challenging problems in superconducting quantum computation such as quantum memory and microwave-optical hybrid quantum interface; theoretically and experimentally investigate cavity-QED-based methods to generate high-performance and reliable single photons. By exploiting the unique physics in the cavity and waveguide QED, the conduct of this project will discover many novel quantum physics and phenomena, and will also provide innovative solutions for outstanding challenges in quantum technology.
腔与波导量子电动力学研究紧束缚在低维空间光学“盒子”中的光场与物质尤其是量子辐射体之间的相互作用基本规律和应用。波导量子电动力学是腔量子电动力学的最新发展。腔与波导量子电动力学是现代量子光学和量子技术的核心领域之一,为量子信息处理等量子技术提供强大手段。腔与波导量子电动力学系统易于集成,可控性强,但也由此导致其动力学过程复杂而反直觉。本项目将揭示腔与波导量子电动力学深层独特物理规律和丰富量子行为,并探索在量子技术中的独有应用。主要内容包括:发展描述复杂低维空间量子光场与物质相互作用动力学的物理模型和理论及数值分析工具;理论研究传输型复杂量子场与原子耦合开放量子系统物理模型和行为;为超导量子计算量子存储和远程互联中微波——光量子相关和信息转换探索新方案;理论结合实验探寻基于腔量子电动力学的高品质高可靠单光子源技术。项目的开展将发现量子物理新现象并为困扰量子技术的挑战性难题提供新解决方案。
光学腔和波导可以将光场限制在低维空间中从而极大增强光与物质的相互作用。腔与波导量子电动力学及其最新发展前沿手性量子光学和量子非互易既揭示量子光学基本物理规律,又被广泛应用于光场调控和光量子信息技术等领域。过去四年内,在国家自然科学基金项目支持下,我们发展出几种低维空间中开放量子系统动力学特性的理论分析和数值模拟方法。以腔和波导量子电动力学原理为基础,我们实验研究了基于超导量子电路的量子行走,聚焦手性光学、光学非互易和量子非互易光学前沿,在无磁场光非互易传输、集成光隔离和量子非互易性新机制研究方向取得了一系列原创性理论和实验突破。此外,建立了量子光学实验室,观测了单光子自愈和光子高维量子纠缠。我们共发表SCI论文30篇,申请发明专利10项,4项获得授权,很好的完成了本项目的既定目标。研究成果分别发表在Science、Physical Review Letters、Laser & photonics Reviews、Physical Review A/Applied/Research、Optics Express、Photonics Research等国际著名期刊,并被引用几百次。2篇文章入选ESI前1%高被引论文。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
五轴联动机床几何误差一次装卡测量方法
光场量子态和量子信息在冷原子介质中的存储
固态量子自旋系统信息传输的量子最优控制研究
非高斯光场纠缠与其在量子信息中的应用
量子信息传输与量子中继器实验研究