As a kind of potential explosive component, metal hydride has a better theoretical energy performance than the conventional metal powder. Introducing metal hydride into composite explosive would result in a better explosion property. Recently, most of the research focused on the influence of metal hydride on the explosion and safety characteristics of composite explosives, whereas, research of the reaction mechanism of metal hydride during detonation was quite a few. In this project, light gas gun and detonation driven flyer will be employed to produce high dynamic pressure loading on the metal hydride samples, the mechanical and thermal reaction of metal hydride will be studied simultaneously. Temperature jump technics and high-power electron beam will be employed for heating the metal hydride samples in an extremely short time, which simulates the high temperature during the detonation. Thermal decomposition and oxidation of metal hydride during the quickly heating will be studied to build a fundamental reaction model. The influence of essential characteristics of the metal hydride, such as the grain size, reactivity, will be also taken into consideration. Through combining the results of high-pressure/ high-temperature loading experiments and composite detonation experiments, the detonation reaction model of metal hydride will be built dependability. Understanding the reaction mechanism of metal hydride during detonation is significant to the design and usage of metal-hydride type composite explosive. Moreover, experimental results of metal hydride under high pressure and high temperature will provide valuable information for its application under extreme condition, therefore, the present research has very important academic significance and practical value.
金属氢化物作为极具潜力的炸药组分,理论上有着比传统金属粉末更优异的能量特性,其添加能有效改善混合炸药的爆炸性能。近年来的研究主要关注金属氢化物对混合炸药爆炸和安全性能的影响,而有关爆轰过程中金属氢化物的响应及机理研究比较少见。本项目通过轻气炮和爆轰驱动飞片加载的方式模拟爆轰过程中的高压,并研究高动压诱导下金属氢化物的力热响应;利用快速放电升温装置和高能电子束平台模拟爆轰瞬间高温作用,研究金属氢化物的分解、氧化等反应过程及机理,建立基准模型,并考虑金属氢化物粒度、活性等自身特性对上述过程的影响;将高压、高温基础性分解实验与混合炸药爆轰综合实验结果相结合,从而建立爆轰过程中金属氢化物反应机理模型。理解金属氢化物的爆轰反应机理对金属氢化物型混合炸药的设计与使用十分重要,同时高压、高温基础性实验结果可为金属氢化物极端条件下的应用提供参考,因此具有重要的学术意义和应用价值。
金属氢化物作为极具潜力的含能添加剂,其在混合炸药中的反应机理研究具有重要的理论价值。本项目通过平板撞击实验和放电点火实验分别模拟爆轰过程中的高压和高温,通过在线诊断和产物回收等方式研究了金属氢化物的力-化响应。结果表明在高压冲击下典型金属氢化物氢化锆没有明显的化学变化;而在高温激励下氢化锆、氢化钛均发生了剧烈的燃烧,并伴随释氢喷射现象,且含金属氢化物混合炸药的点火反应过程中,金属氢化物存在明显的后燃现象,使得反应时间显著增加,持续时间高达几十毫秒。通过平板驱动实验研究了含金属氢化物混合炸药的爆轰特性,发现金属氢化物含量和氧平衡对混合炸药爆轰特性有显著影响。空中爆炸和热分析实验结果表明添加氢化锆能够改善混合炸药爆炸性能,同时具有较好的热安定性。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于SSVEP 直接脑控机器人方向和速度研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于混合优化方法的大口径主镜设计
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
冲击作用下含铝炸药爆轰特性及铝粉反应机理研究
炸药爆轰合成碳包覆纳米金属粒子与其机理研究
乳化炸药及乳化粉状炸药燃烧转爆轰研究
物理储氢炸药热点模型和爆轰机理研究