The polyamide/copolyamide (PA/CoPA) micro- and nanofiber membranes were produced by bidirectional electrospinning. After heat treating process at a suitable heating temperature, the CoPA electrospun fibers were melt and bonded with the other fibers to generate stable three-dimensional network junction in the electrospun fiber webs. The mechanical performance of the resultant electrospun micro- and nanofiber membrane was increased significantly due to the appearance of junctions. The poor mechanical performance of conventional electrospun fiber membrane was improved by generating the junctions between electrospun fibers. The polypyrrole nano particles were controllably prepared on the surface of micro- and nanofiber by mist polymerization, to form PPy micro- and nanofiber flexible electrode materials with hierarchical three-dimensional network structure, in which micro- and nanofiber net is as a flexible template and comb-like polycarboxylic acid surfactant is as the dopant and soft template. A flexible supercapacitor was fabricated with PPy micro- and nanofiber flexible electrode materials with hierarchical three-dimensional network structure as electrode materials. The charging/discharging performance of the flexible supercapacitor was investigated. Moreover, a novel method of constructing micro- and nanofiber membranes with the good mechanical performance will be established. The controlled growth of the electroactive conducting polymers on the surface of micro- and nanofiber will be investigated. The effects of the structures of PPy micro- and nanofiber flexible electrode materials and the composition and micro-morphology of the electroactive layer on the conductive and electrochemical properties of the electrodes will be explored. The fabrication of micro- and nanofiber membranes as cladding electrode substrate for the supercapacitor will be optimized. This investigation will offer a creative way to produce polypyrrole micro-and nanofiber membranes with hierarchical three-dimensional network structure as electrode materials for supercapacitor and have significant impact on the development of flexible energy-storage devices.
拟利用双向静电纺丝工艺,纺出尼龙/共聚酰胺(PA/CoPA)微纳米纤维膜。经热处理,低熔点CoPA纤维作为热熔粘合纤维,在纤维交叉处粘合加固纤维网,形成稳定的立体网结构,克服了一般电纺纤维膜因无粘合加固点而强度低的弊端。以此微纤维网为柔性模板,以梳状聚羧酸表面活性剂为掺杂剂和软模板,采用喷雾聚合方式,调控聚吡咯纳米颗粒在微纳米纤维表面上的形貌,构筑多层次立体网结构的聚吡咯柔性电极材料。并以此为电极材料组装柔性超级电容器,研究其充放电性能。研究工作包括:设计制备高强微纳米纤维膜的新方法,系统研究导电聚合物在微纳米纤维上的生长控制过程,揭示聚吡咯微纳米纤维柔性电极材料的物理化学结构、组成和微观形貌对其导电性能和电化学性能的影响规律,探索、优化微纳米纤维膜为基材的电容器组装工艺。课题的开展将为以多层次立体网结构的聚吡咯柔性电极作为超级电容器电极材料的制备提供一种新思路,对发展轻薄、柔性储能意义。
目前将计算机技术、网络信息技术等技术和纺织品结合的可穿戴电子智能服装被认为是未来纺织品高端化、智能化的发展方向。要实现这样可穿着的智能服装,柔软、轻质的换能/储能装置是必不可少的。但传统的换能/储能装置体积大和质量重,难以满足智能纺织品的应用需求。因此,发展轻薄的柔性换能/储能器件,对制造出可穿戴电子智能服装具有重要的意义。超级电容器一直被认为是最具前景的储能装置。电容器的性能,主要取决于其电极材料的性能。提高电极材料的电导率和比表面积,有助于增加电极/电解质的接触面积,增大其活性区域、降低离子迁移扩散的距离,从而有效地提高电极材料的比容量。本项目以此为出发点,研究了以纳米纤维网为柔性模板构建多层次立体网结构的聚吡咯导电通路,获得具有高比容量的聚吡咯柔性超级电容器用电极材料。进而以此为电极材料,进行柔性超级电容器的组装,研究其充放电性能,获得了高性能的柔性储能器件。基于多层次结构聚吡咯电极材料组装的柔性固态超级电容器,具有高容量、质量轻、柔性可弯曲和循环稳定性好的特点,为发展适于可穿戴电子智能产品的柔性储能设备奠定理论和应用基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
双阴离子协同掺杂聚吡咯基宽电压窗口超级电容器电极材料
基于三维聚吡咯微电极阵列结构的MEMS微型超级电容器研究
氧化锰多层次纳米结构超级电容器电极材料的研究
聚吡咯/取向碳纳米管构建柔性超级电容器的结构设计和性能研究