Nanoscale solid materials are widely used in micro-nano electronic devices and the thermal transport properties are significantly different from the corresponding bulk materials. Research on the thermal transport properties of nanomaterials is of great importance for solving the problems and challenges in practical applications and exploring new physical phenomena and laws. This project is aimed at revealing the influencing mechanism and rules for the thermal transport properties of suspended and supported nanomaterials and providing experimental basis and theoretical guide for the development and applications of nanoscale devices. In this project, a novel systematic Raman spectroscopy measurement method is to be developed and the corresponding experimental system is to be established, which will be used to realize the comprehensive measurement of the thermal transport properties of the same nanomaterial with temperature dependent Raman spectra in both the suspended and supported forms. In the temperature range of 100-400 K, we will measure the thermal conductivity, thermal diffusivity and interfacial thermal resistance of suspended and supported nanomaterials such as carbon nanotubes, graphene and 2D molybdenum disulfide and establish the thermal transport property database for these nanomaterials. Further, with the help of molecule dynamic simulations, the influencing mechanism and rules will be revealed on the influencing factors of ambient temperatures, process parameters, characteristic sizes and nanoscale structures. Most importantly, the influencing rules of the supporting substrate on the thermal transport properties will be revealed by comparison research on the suspended and supported part of the same sample.
纳米尺度固体材料在微纳电子器件中广泛应用,其热传递特性与常规体材料显著不同。研究纳米材料热传递特性对于解决实际应用中的问题与挑战和探索新物理现象与规律具有重要意义。本项目旨在揭示影响悬架和有基底支撑纳米材料热传递特性的物理机制和规律,为纳米器件的开发和应用提供实验依据和理论指导。项目拟开发具有自主原理创新的系统拉曼光谱法并搭建相应的测试平台,实现对同一有拉曼温度频移特性的纳米材料样品悬架段和基底支撑段热传递特性的综合测量和对比研究;在100-400K温度区间测量悬架和有支撑碳纳米管、石墨烯、二硫化钼等纳米材料的热导率、热扩散率和界面热阻,初步建立纳米材料热传递特性数据库;结合分子动力学模拟,揭示环境温度、工艺参数、特征尺寸和微观结构等对纳米材料热传递特性影响的物理机制和规律;对比研究同一纳米材料悬架段和有支撑段的热传递特性,揭示基底支撑对其热传递特性的影响规律。
纳米尺度固体材料在微纳电子器件中广泛应用,其热传递特性与常规体材料显著不同。研究纳米材料热传递特性对于解决实际应用中的问题与挑战和探索新物理现象与规律具有重要意义。本项目通过实验和理论研究,揭示了影响悬架和有基底支撑纳米材料热传递特性的物理机制和规律,为纳米器件的开发和应用提供了实验依据和理论指导。项目开发了具有自主原理创新的系统拉曼光谱法,并搭建了相应的测试平台,实现了对同一有拉曼温度频移特性的纳米材料样品悬架段和基底支撑段热传递特性的综合测量和对比研究;在100-400K温度区间测量了悬架和有支撑碳纳米管、石墨烯、二硫化钼等纳米材料的热导率、热扩散率和界面热阻,初步建立了纳米材料热传递特性数据库;结合分子动力学模拟,揭示了环境温度、工艺参数、特征尺寸和微观结构等对纳米材料热传递特性影响的物理机制和规律;对比研究了同一纳米材料悬架段和有支撑段的热传递特性,揭示了基底支撑对其热传递特性的影响规律。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
潜热型熔盐储能材料的制备及其多尺度热质传递特性
新型保温材料的微尺度热质传递机理及吸附破坏特性研究
阵列碳纳米管薄膜热量传递规律的实验和理论研究
固体表面二元特性的纳米尺度研究