In a large scale deployment mobile sensor networks, it usually leads to a mixed and dynamic network resources distribution for the differences of nodes resource consumption. The random distributions of network tasks can cause the uncertainty balance of network resource consumption and the unpredictable node lifetime, which also limits the controllability of the network stability. Therefore, in order to achieve the reasonable distribution of network resources and improve the network stability, it needs to optimize the cooperative task distribution mechanism according to the dynamic network resources. However, in some networks, node mobility is an inevitable way to circumvent the unbalanced node lifetime caused by uneven task distribution. So, in first place, this work establishes a network dynamic resource distribution model and generates a network resource consumption rate distribution map based on the geographic positions of sensor nodes, to achieve the comprehensive perception of network resources; Then, puts forward to a dynamic task distribution mechanism to keep real-time matching of the elimination and holdings of node resources, in order to realize the rapid cooperative of tasks and low power consumption control together, at the same time to enhance network resource utilization and network stability; At last, this work also proposes a dynamic adaptive topology adjustment scheme based on the distribution of network resource consumption, and designs an opportunistic data relay strategy based on node mobility, to balance the stability of the resource consumption rate and improve the data transition rate, this work also designs an opportunistic data relay strategy based on node social characters, to reduce data collection delay, as well as maintain the nodes in the network load balance.
在移动传感器网络的部署中,因节点资源消耗的差异性而引起混杂和动态多变的网络资源分布,而任务的随机分配导致不均衡的资源消耗和不可预测的节点寿命。因此,为了实现网络资源合理配置并提升网络稳定性,需要根据资源的动态变化进行任务分配,还需要通过节点的移动缓解因节点任务量分布的不均衡而导致的节点寿命不均衡。为此,本课题首先建立移动传感器网络的动态资源分布模型,根据地理位置信息获取网络资源消耗率分布图,以实现对网络资源的全面感知;接着提出保持节点的资源消量与其资源持有量实时匹配的动态任务分配机制,以实现任务的快速协同和低功耗控制,合理使用资源并提升网络的稳定性;最后提出基于资源分布的拓扑结构动态自适应调整方案,并设计基于网络节点移动特性的机会传输策略,以进一步促进节点资源消耗率的均衡,提高数据传输效率,同时给出基于节点社会属性的机会传输方法,以尽可能降低数据收集时延,维持网络中节点的负载均衡。
本项目在对移动传感器网络资源全面感知与机会传输策略研究的基础上,针对网络中节点的资源差异性和实时变化,建立动态资源分布模型和动态任务分配机制,以实现任务的快速协同和低功耗控制,以提高资源的综合利用率(例如,感知数据、能量、带宽和存储空间的综合利用率)。并提出动态拓扑调整方法和基于节点移动特性的机会传输策略和基于节点社会属性的机会传输策略,以进一步提高数据传输效率以及降低数据传输能耗,同时尽可能降低数据收集的时延,维持网络中节点的负载均衡。项目提出基于移动SINK的数据收集算法与模型,并给出了协议实现,为了提升对资源全面感知下的收集效率,充分考虑感知数据分布和资源差异性,给出均衡能耗和网络资源的移动轨迹规划方法,最后,针对链路不可靠这一造成节点间机会性连接的原因,基于随机图模型,设计提出基于链路不可靠的数据收集机制,从而提高数据传输成功率并降低能耗。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
跨社交网络用户对齐技术综述
农超对接模式中利益分配问题研究
内点最大化与冗余点控制的小型无人机遥感图像配准
移动机会网络的传输潜力分析与研究
资源受限机会网络中的传输机制研究
面向OFDM系统的协作网络编码传输策略及资源分配研究
认知用户多信道传输资源分配策略研究