The performance of TMDs is sensitive to frequency change, and also suffers from a narrow effective bandwidth as well as impractical mass requirements. Therefore, a novel adaptive viscoelastic pounding tuned mass damper (P-TMD) is proposed. Additional energy dissipation through pounding is introduced due to the mass displacement limitation provided by a viscoelastic layer. By carefully designing the parameters of the P-TMD, the P-TMD can automatically produce a unique damping response to multiple types of excitations. The automatic transitioning of the P-TMD response to match the excitation type leads to an enhanced vibration control effectiveness and adaptability to input variety. First, based on the deformation characteristics of the viscoelastic layer, an improved Hertz-based pounding force model will be proposed, and a numerical model of the proposed P-TMD will be set up afterward. Subsequently, P-TMD prototypes will be designed and manufactured. The P-TMD will be tested in three cases as a measure of vibration control effectiveness. The first two cases are the application of P-TMDs towards high-rise buildings subjected to wind and earthquake loads respectively, and the third case is the ability of P-TMDs to improve comfort of pedestrian footbridges. Shake-table tests and a scaled footbridge experiment, along with numerical simulations, will be performed to validate the P-TMD performance in the respective cases. Detailed parameter analysis and energy consumption analysis will shed more light on the P-TMD damping mechanisms, as well as the optimal energy consumption mechanisms and design parameters for different applications. Comparisons will be made to demonstrate whether P-TMDs have better adaptability than traditional TMDs, and whether P-TMDs can achieve ideal control effectiveness with less mass requirements. Potential undesirable effects caused by the pounding behavior will also be examined. Results from this project will pave a theoretical and experimental foundation for future applications of the P-TMD in the civil engineering field.
针对TMD对频率敏感、减振频带窄、所需质量大的缺陷提出自适应粘弹性碰撞调谐质量阻尼器(P-TMD)。引入粘弹性材料限位增加了碰撞耗能并赋予了装置多种工作耗能模式,通过在不同参数设置和外部激励下实现耗能模式间的自动转换以达到更稳定的控制效果及适应性。首先,项目将基于碰撞试验考虑粘弹性材料的变形特点提出改进Hertz碰撞力模型并建立阻尼器力学模型。进而,设计制造阻尼器原件,结合数值仿真、振动台试验与人行天桥模型试验对粘弹性P-TMD应用于高层及高耸结构抗风及抗震、提高人行天桥舒适度的减振能力进行验证;详细的参数和耗能分析将揭示P-TMD在不同条件的减振机理、最优耗能模式及对应最优参数。通过比较将检验阻尼器较传统TMD是否具有更好的自适应能力,是否能够利用碰撞耗能使之用更小质量达到理想控制效果。最后,结合试验分析碰撞可能对结构造成的不利影响。成果将为该阻尼器在土木工程的应用提供理论和试验支持。
针对TMD对频率敏感、减振频带窄、所需质量大的缺陷提出自适应粘弹性碰撞调谐质量阻尼器(P-TMD)。引入粘弹性材料限位增加了碰撞耗能并赋予了装置多种工作耗能模式,通过在不同参数设置和外部激励下实现耗能模式间的自动转换以达到更稳定的控制效果及适应性。 首先,项目基于碰撞试验考虑粘弹性材料的变形特点提出了改进Hertz碰撞力模型并建立阻尼器力学模型。进而,设计制造集成水平双向及竖向P-TMD阻尼器原件,结合数值仿真、振动台试验与人行天桥模型试验对粘弹性P-TMD应用于高层及高耸结构抗风及抗震、提高人行天桥舒适度的减振能力进行验证; 结果表明,制作的P-TMD能够在地震激励下有效减小结构的地震响应,对结构峰值反应的减振效果可达40%,相比传统的TMD具有很大的优越性。结合振动台试验和数值模拟进一步进行了详细的参数和耗能分析,揭示了P-TMD在不同条件的减振机理、最优耗能模式及对应最优参数。 通过比较检验了阻尼器较传统TMD是否具有更好的自适应能力,是否能够利用碰撞耗能使之用更小质量达到理想控制效果。最后,结合试验分析了P-TMD碰撞可能对结构造成的不利影响主要集中于碰撞区域,影响的将是主体结构的构件耐久度。本项目研究成果将为该阻尼器在土木工程的应用提供理论和试验支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
粘弹性碰撞调谐质量阻尼器减振机理及优化设计研究
单面碰撞式调谐质量阻尼器结构减振理论与试验研究
颗粒阻尼器减振机理及影响减振效率参量的定量研究
带弹性支承的颗粒碰撞阻尼器的减振机理及动力学特性研究