In the complex network communication environment, the multisensor data is transmitted through the network. The amount of data is huge and the type is various. There are many problems, such as packet loss, multirate sampling, random unreliable and so on. How to reduce the network load and improve the accuracy of data fusion is the most important problem in the field of networked multi-sensor data fusion. Based on unreliable measurements, by combining the traditional time triggered multisensor data fusion, model based fault detection, event-triggered estimation, this project aimed to research event-triggered multisensor fault tolerant fusion estimation algorithms. The aim of this project is to achieve the optimal state estimation by using the minimum transmission rate. Through the analysis of the matching probability model and communication data, the event triggered multisensor system is to be established. Through the statistical analysis of observations, we will present the event triggered data reliability evaluation method to effectively avoid the fault propagation. This project will put forward series of distributed event triggered multisensor fault tolerant fusion estimation algorithms, to improve the estimation precision in limited communication conditions in complex network environment. The results enrich the theory of multi-sensor optimal estimation, and provide theoretical and technical support for the application of information fusion and control in multisensor network systems.
在复杂网络通信环境下,多传感器数据通过网络进行传输,数据量庞大、类型多样,且存在丢包、多速率采样、随机不可靠等问题。如何在减少网络负载的同时提高数据融合精度是当前网络化多传感器数据融合领域面临的首要科学问题。本项目基于多传感器非可靠量测,以时间触发数据融合、基于模型的故障检测与事件触发估计为基础,开展事件触发多传感器系统容错融合估计方法研究,旨在利用最少的通信传输率,达到最优的状态估计结果。通过对概率模型和通信数据的匹配性分析,建立事件触发多传感器系统框架;基于对观测的统计分析,给出事件触发数据可靠性评估方法,有效避免故障传播;提出分布式事件触发多传感器容错融合估计算法,在有限通信条件下,提高复杂网络环境下的状态估计精度。项目成果丰富了多传感器最优估计理论,并为多传感器网络系统信息融合与控制相关应用提供理论和技术支持。
在复杂网络通信环境下,多传感器数据通过网络进行传输,数据量庞大、类型多样,且存在丢包、多速率采样、随机不可靠等问题。如何在减少网络负载的同时提高数据融合精度是当前网络化多传感器数据融合领域面临的首要科学问题。本项目基于多传感器非可靠量测,以时间触发数据融合、基于模型的故障检测与事件触发估计为基础,开展事件触发多传感器系统容错融合估计方法研究,利用较少的通信传输率,达到最优的状态估计结果。通过对概率模型和通信数据的匹配性分析,建立事件触发多传感器系统框架;提出分布式事件触发多传感器容错融合估计算法,在有限通信条件下,提高复杂网络环境下的状态估计精度。发表SCI论文3篇,EI论文2篇,申请受理发明专利1项。项目成果丰富了多传感器最优估计理论,并为多传感器网络系统信息融合与控制相关应用提供理论和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于多模态信息特征融合的犯罪预测算法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
量测随机缺失多速率系统估计理论与应用
基于网络事件触发Markov跳变系统的异步融合估计
基于动态事件触发调度的目标状态分布式融合估计方法研究
多传感器随机不确定系统的自适应信息融合估计