The aircraft with multiple actuators is one of the important research directions in modern aircraft. It is the precondition of the flight control for this type of aircraft that allocating efficiently the desired command among the redundant actuators. This problem is worth studying thoroughly. Aiming at the scientific problem of the tracking performance improvement in the transient and steady behavior, there are three research contents in this project. Both of the dynamic grid technology and unsteady numerical method are applied to reveal the mechanism and rule of the control effectiveness nonlinear characteristic during the control surfaces manipulation, and the aircraft model with multiple actuators is built. The prescribed performance method and adaptive mechanism are employed to expanding the closed-loop control allocation based on the aerodynamic moment increments feedback, and the closed-loop adaptive control allocation method with prescribed performance is studied to guarantee the tracking error between the real moment increment and the desired moment increment satisfy the prescribed performance behavior. Based on this method, the anti-windup control allocation and fault-tolerant control allocation methods are studied. The aerodynamics/kinematics/control-allocation coupling computation method is studied, and the CFD-based virtual flight simulation platform is built to verify the proposed method. The achievements of the project are expected to provide a new basis for building the model of aircraft with multiple actuators, provide a new method for improving the transient and steady tracking performance of control allocation, and enrich the control allocation verification method.
多操纵面飞行器是现代飞行器发展的重要方向,合理、高效地将期望控制指令分配到各冗余操纵面是实现此类飞行器飞行控制的前提,具有十分重要的研究价值。针对如何提高指令跟踪过程中控制分配方法的暂、稳态跟踪性能问题,本项目拟开展三方面研究:采用动网格变形技术和非定常计算方法,揭示多个操纵面动态偏转过程中控制效力非线性特性的产生机理和演化规律,建立多操纵面飞行器模型;在基于力矩增量反馈的闭环控制分配基础上,引入保性能思想和自适应机制,研究基于保性能的闭环自适应控制分配方法以保证实际力矩增量与期望力矩增量的误差位于预设的暂、稳态性能边界内,并研究抗饱和以及容错控制分配问题;研究气动/运动/控制分配耦合计算方法,构建基于CFD的虚拟飞行试验平台以验证所提理论方法的有效性。研究成果将为多操纵面飞行器建模提供新依据,为提高控制分配的暂、稳态跟踪性能提供新方法,为控制分配方法有效性验证提供新思路。
多操纵面飞行器是现代飞行器发展的重要方向,合理、高效地将期望控制指令分配到各冗余操纵面是实现此类飞行器飞行控制的前提,具有十分重要的研究价值。本课题研究了多操纵面飞行器的飞行控制问题,主要包括:研究了操纵面控制效力非线性特性的产生机理和演化规律,建立了多操纵面飞行器数学模型;提出了基于力/力矩增量反馈的闭环控制分配方法,实现了多操纵面飞行器的直接力控制,实现了姿态与轨迹控制的解耦;研究了基于扩张状态观测器和非线性干扰观测器的抗扰动控制方法及其在控制分配、飞行器轨迹跟踪控制、避撞飞行控制等方面的应用,实现了多源干扰下飞行器的轨迹跟踪控制、自动避撞、有限时间自动避撞等;提出了混合灰狼-共生搜索算法、强化学习-灰狼优化算法,并将其应用于多操纵面飞行器的控制分配和路径规划。研究成果为多操纵面飞行器的建模、飞行控制、智能自主控制等研究提供了新方法、新思路,具有较好的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
基于隐身特征的多操纵面飞行器控制分配方法研究
混合异类多操纵面复合控制
无尾飞翼布局飞行器的操纵面故障强化学习最优自适应补偿控制研究
闭环稳定的预报控制和自适应预报控制