Dextranases have wide industrial applictions in foodstuff and medication. Currently, most commercial dextranases are of mold (Penicillium, Chaetomium species), and there are some problems of food safety risks, high production costs, and poor thermostability. In this study, the dextranase from marine Arthrobacter (ADex) will be grown crystals, and X-ray diffraction techniques will be used to resolve ADex structure and function. Directed evolution techniques will be used to improve the thermostability, and the high throughput screening will be used to obtain the mutated enzymes (ADexD). The three-dimensional structures of ADexD and ADex will be compared and analyzed. Computer-aided method will be applied to calculate numerical values such as temperature factor (B-factor) of the amino acid residues, molecular dynamics simulation. The enzyme's thermostability important residues will be selected for site-saturation mutagenesis, and the mutated dextranase (ADexS) that the thermostability has been improved significantly will be screened. Comparing the difference of the three-dimensional structures between ADexS and ADex, the structural features and molecular mechanisms related to thermostablility of bacterial dextranase will be elucidated by analyzing the distribution and location effect as well as the hydrophobic effect of mutation sites, and effects of mutation sites on the form of hydrogen bonding, disulfide bonding, and ion pairing. Finally, This study will discover the three-dimensional structure and function of dextranase from marine Anthrobacter, obtain the thermostable dextranase of molecular modification, and provide a theoretical basis and experimental evidence for further research and application.
右旋糖酐酶在食品和医药工业上应用广泛。目前右旋糖酐酶多来源于霉菌,存在安全隐患、稳定性差、生产成本较高等问题。本项目通过制备海洋节杆菌右旋糖酐酶(Adex)晶体,用X-射线衍射技术解析ADex的结构和功能。采用定向进化技术获得热稳定性提高的突变酶(ADexD),比较ADexD与ADex的晶体结构差异,并通过计算氨基酸残基的温度因子(B-factor)的数值、分子动力学模拟等计算机辅助的方法,确定定点饱和突变的关键位点,再用定点饱和突变技术获得稳定性显著提高的突变酶(ADexS)。通过比较ADexS和ADex之间结构功能差异,分析突变位点在三维结构上的分布、位置效应和疏水效应,以及突变位点对氢键、二硫键和离子对形成的影响,阐明海洋节杆菌右旋糖酐酶热稳定性的分子机制。本项目的研究将解析海洋节杆菌右旋糖酐酶的三维结构和功能,获得热稳定性高的突变酶,为右旋糖酐酶的研究和应用提供理论基础和实验依据。
右旋糖酐酶是水解右旋糖酐中α-1,6糖苷键的内切酶。2012年被批准为食品添加剂,在食品工业和医药行业的应用逐年增加。现市场销售的右旋糖酐酶多为霉菌发酵生产,本研究的菌种是从海洋中筛选的氧化节杆菌(Arthrobacter oxydans KQ11), 其产酶活性高,具有较好的应用前景。通过定点突变,明确了该酶的催化域: 关键氨基酸为418谷氨酰胺残基、420天冬氨酸残基、423谷氯酸残基和439天冬氯酸残基。其中,420天冬氨酸残基为广义碱,439天冬氨酸残基为广义酸。对酶基因进行克隆表达,经酶蛋白镍柱纯化后用悬滴进行结晶,在四种条件中出现了晶体。最终,在Screen-B11(23):0.2M六水合氯化镁,0.1M HEPES钠pH 7.5, 30%聚乙二醇400 v / v条件下,获得尺寸为0.2mm×0.1mm×0.1mm的蛋白质晶体。经上海同步辐射装置的ADSC Q315 CCD检测器检测,该晶体属于空间群C2,细胞参数,a= 214.07, b= 55.10, c= 62.19, α= 90.0, β=90.5, γ=90.0,经同源性蛋白质分子转换,分辨率为1.39 Å。结构经细化,精化模型的统计数据已上传蛋白质数据库RCSB Protein Data Bank(www.rcsb.org),PDB ID为 6NZS。该酶由二个结构域(N、C)组成,其中N结构域由13个β折叠构成β-三明治结构,C为催化结构域,由3个平行β折叠片层3个β折叠。选择了10个B-factor 值最高的氨基酸,定点突变为苯丙氨酸。经热稳定性检测,357丝氨酸残基被突变后,在60℃时的残余酶活是末突变酶的3倍,在65℃和70℃时则提高了5倍。末突变酶在60℃时35分钟后即没有酶活,而突变酶经55分钟仍然保留40%的残余酶活。右旋糖酐酶水解右旋糖酐可以得到麦芽三、四、五糖。在甘蔗汁中加入0.1U/mL,50℃,pH6.5时,在超声辅助下,可清除88.7%的右旋糖酐。在6 U/mL的浓度下,可清除体内、外牙菌斑,有效预防龋齿。解析了该酶与镁铁层状双氢氧化物的吸附机制,实现了该酶在无机纳米材料表面的固定化。本研究对右旋糖酐酶的结构进行了解析,依据B-factor进行了分子改造,提高了酶的稳定性,为该酶的广泛应用奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
结核性胸膜炎分子及生化免疫学诊断研究进展
假单胞杆菌有机磷降解酶OPHC2的分子改造及其结构功能研究
菊糖果糖基转移酶的结构功能解析与分子改造研究
药用右旋糖酐生物合成中的右旋糖酐蔗糖酶催化机理及其分子改造研究
氧化葡萄糖杆菌右旋糖酐糊精酶的分子生物学基础和催化功能研究