Skin antenna is a multifunctional composite structure which can simultaneously provide the load-bearing structure and steerable electromagnetic beam pointing functions. The microwave circuits and micro-channel heat sinks are highly integrated into the mechanical structure of the skin antenna, and the antenna has great application prospect in the future. The existing skin antenna has the load-bearing and electromagnetic transmitting-receiving functions. However, because it cannot adaptively adjust the electromagnetic performance in a complex service environment, it is difficult to guarantee the reliable operations of the skin antenna. In order to solve this problem, this project proposes a novel antenna structure—smart skin antennas in which fiber Bragg grating strain sensors are embedded into the antenna structure. The shape-performance control mechanisms and robust layout design will be investigated for the development of the smart skin antenna. Therefore, this project will firstly apply a hybrid modeling method to build the relationship model between the structural deformations and the excitation currents considering the mutual coupling of the antenna elements, and present the control mechanisms between the measured strain information, excitation currents and the electrical performance. A two-step sequential layout method will be proposed to realize the robust placements of the fiber Bragg grating strain sensors, to obtain an accurate reconstruction of the structural deformation from a small amount of strain sensors. In addition, this project will also propose a robust design model of the RF layer integrating the mechanical, electromagnetic and heat disciplines, and a parallel multi-point adaptive surrogate model will be applied to efficiently solve the design model. Finally, an experimental system of the smart skin antenna will be developed to verify the mechanisms and methods above. This project has an important theoretical significance and practical value for the development of the smart skin antenna.
蒙皮天线是一种兼具电磁辐射和力学承载的多功能复合结构,其机械结构、微波电路和微通道散热部分高度融合和集成,在未来的装备中具有巨大的应用前景。现有的蒙皮天线具有力学承载和电磁收发的功能,然而,它不具备在复杂环境下自适应调控电磁性能的能力,难以保障蒙皮天线的可靠服役。针对这个挑战,本项目提出一种嵌入光纤光栅应变传感器的新型蒙皮天线——智能蒙皮天线,并研究其形性调控机理和稳健布局设计问题。为此,本项目拟通过混合建模方法建立考虑天线单元互耦影响下的结构变形与天线激励电流的关系模型,揭示应变测试信息、激励电流与电性能之间的调控机理;提出两步序列应变传感器的稳健布局方法以实现天线结构变形的准确重构;构建射频层机电热集成的稳健布局设计模型,并利用提出的多点并行自适应代理模型实现其高效求解;在此基础上,研制智能蒙皮天线实验系统以验证上述机理和方法。本项目对智能蒙皮天线的研制具有重要的理论意义与实用价值。
蒙皮天线是一种兼具电磁辐射和力学承载的多功能复合结构,其机械结构、微波电路和微通道散热部分高度融合和集成,在未来的装备中具有巨大的应用前景。现有的蒙皮天线具有力学承载和电磁收发的功能,然而,它不具备在复杂环境下自适应调控电磁性能的能力,难以保障蒙皮天线的可靠服役。针对这个挑战,本项目提出一种嵌入光纤光栅应变传感器的新型蒙皮天线——智能蒙皮天线,并研究其形性调控机理和稳健布局设计的科学问题。.针对这两个科学问题,项目建立了不完备应变测量信息与天线单元激励的应变-幅相耦合模型,揭示了稀疏应变测试信息、天线单元激励与电磁辐射性能之间的形性调控机理;提出了不完备应变测量信息下的天线结构形变感知方法,实现了稀疏应变传感器的布局优化和结构形变实时重构;建立了蒙皮天线射频层的机电热耦合模型,并在基础上,利用区间数学构建了射频层的机电热稳健优化设计模型,并利用提出的信頼域并行贝叶斯优化算法实现了稳健优化设计模型的高效求解。项目研制了C波段和X波段智能蒙皮天线原理样机,并利用大型相控阵天线试验平台和无人机机翼蒙皮天线平台开展了工程应用验证,这些理论和实验研究为智能蒙皮天线的工程应用奠定了基础。.本项目提出的智能蒙皮天线即可作为运载平台力学承载的蒙皮结构,又可作为收发电磁波的微波天线。蒙皮天线结构内部嵌入的应变传感器不仅能够实时监测运动平台的结构健康状态,而且可以实时调控蒙皮天线的辐射性能。本项目的研究成果可以广泛应用到新一代战机、无人机、预警飞艇、智能战车、隐身战舰等平台的研制。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
基于光纤光栅应变箍传感器的管道腐蚀和泄漏监测研究
低温环境下光纤光栅传感器的抗疲劳设计
基于光纤光栅土体小应变刚度测试及小应变本构模型研究
双峰谐振SPR长周期光纤光栅传感器优化设计